• Title/Summary/Keyword: Medial temporal lobe epilepsy

Search Result 11, Processing Time 0.026 seconds

Differentiation of Medial or Lateral Temporal Lobe Epilepsy by F-18-Fluorodeoxyglucose Positron Emission Tomography: Comparative Study with Magnetic Resonance Imaging in 113 Surgically and Pathologically Proven Patients (F-18-Fluorodeoxyglucose 양전자단층촬영을 이용한 내외측 측두엽간질의 감별: 수술과 병리 소견으로 확진한 113예에서 자기공명영상과 비교 분석)

  • Lee, Dong-Soo;Lee, Sang-Kun;Chang, Ki-Hyun;Chung, Chun-Kee;Choi, Ki-Young;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.2
    • /
    • pp.111-119
    • /
    • 1999
  • Purpose: As mesial temporal lobe epilepsy (TLE) shows hypometabolism of medial and lateral temporal lobe, we investigated whether symmetric uptake of F-18-FDG in medial temporal lobes can differentiate mesial from lateral TLE. Materials and Methods: In 113 patients (83 mesial TLE, 30 lateral TLE) who underwent anterior temporal lobectomy and/or corticectomy with good surgical outcome, we performed F-18-FDG PET and compared F-18-FDG uptake of medial and lateral temporal lobes. All the patients with mesial TLE had hippocampal sclerosis except one congenital abnormal hippocampus. Patients with lateral TLE revealed cerebromalacia, microdysgenesis, arteriovenous malformation, old contusion, and cortical dysplasia. Results: Sensitivity of F-18-FDG PET and MR for mesial TLE was 84% (70/83) and 73% (61/83), respectively. Sensitivity of F-18-FDG PET and MR for lateral TLE was 90% (27/30) and 66% (20/30), respectively. Twelve patients were normal on F-18-FDG PET. 101 patients had hypometabotism of lateral temporal lobe. Among 88 patients who showed hypometabolism of medial temporal lobe as well as lateral temporal lobe, 70 were mesial TLE patients and 18 were lateral TLE on pathologic examination. Positive predictive value of medial temporal hypometabolism for mesial TLE was 80%. Among 13 patients who showed hypometabolism of only lateral temporal lobe, 4 were mesial TLE and 9 were lateral TLE. Positive predictive value of hypometabolism of lateral temporal lobe for the diagnosis of lateral TLE was 69% (9/13). Normal MR findings stood against medial TLE, whose negative predictive value was 66%. Conclusion: Lateral temporal lobe epilepsy should be suspected when there is decreased F-18-FDG uptake in lateral temporal lobe with normal uptake in medial temporal lobe.

  • PDF

Asymmetry of Medial and Lateral Temporal Regional Glucose Metabolism in Temporal Lobe Epilepsy by F-18-FDG PET (측두엽 간질에서 F-18-FDG PET에 나타난 측두엽 내외측 부위별 대사의 차이)

  • Lee, Dong-Soo;Yeo, Jeong-Seok;Song, Ho-Cheon;Lee, Sang-Kun;Kim, Hyun-Jip;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.1
    • /
    • pp.28-39
    • /
    • 1999
  • Purpose: We investigated the difference of glucose metabolism of medial and lateral temporal lobes of patients with temporal lobe epilepsy (TLE) utilizing quantitative comparison of regional metabolic activities using asymmetric index. Materials and Methods: We studied 19 pathologically proven mesial TLE and 25 lateral TLE patients. Lateral TLE patients were either normal on magnetic resonance imaging (cryptogenic: n=14) or had structural lesions (lesional: n= 11). Asymmetric index (ASI) was calculated as [(ipsilateral-contralateral)/(ipsilateral+contralateral)]${\times}200$. Results: ASI of medial and lateral lobes of mesial TLE was decreased ($-16.4{\pm}8.3$ and $-12.1{\pm}5.5$, respectively). In cryptogenic lateral TLE, ASI of lateral temporal lobe was decreased ($-11.8{\pm}4.7$), whereas that of medial temporal lobe was not decreased ($-4.6{\pm}6.3$). ASI of medial lobe of lesional lateral TLE was $-7.3{\pm}9.1$, which was significantly different from that of mesial TLE (p<0.05). Patients with lesional lateral TLE had evident metabolic defects or decrease (ASI: $-22{\pm}10.5$) in lateral temporal lobe. While we could not find the difference of metabolic activity in lateral temporal lobes between cryptogenic lateral TLE and mesial TLE patients, the difference of metabolic activity was significant in medial temporal lobes which was revealed by ASI quantitation. Conclusion: Asymmetric decrease of metabolic activity in both medial and lateral temporal lobes indicates medial temporal epilepsy. Symmetry of metabolic activity in medial temporal lobe combined with asymmetry of that in lateral temporal lobe may give hints that the epileptogenic zone is lateral.

  • PDF

Functional Neuroimaging in Epilepsy: FDG-PET and SPECT (간질에서의 기능적 뇌영상:양전자방출단층촬영과 단일광전자방출 단층촬영)

  • Lee, Sang-Kun;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.1
    • /
    • pp.24-33
    • /
    • 2003
  • Finding epileptogenic zone is the most important step for the successful epilepsy surgery. F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and single photon emission computed tomography (SPECT) can be used in the localization of epileptogenic foci. In medial temporal lobe epilepsy, the diagnostic sensitivity of FDG-PET and ictal SPECT is excellent. However, detection of hippocampal sclerosis by MRI is so certain that use of FDG-PET and ictal SPECT in medial temporal lobe epilepsy is limited for some occasions. In neocortical epilepsy, the sensitivities of FDG-PET or ictal SPECT are fair. However, FDG-PET and ictal SPECT can have a crucial role in the localization of epileptogenic foci for non-lesional neocortical epilepsy. Interpretation of FDG-PET has been recently advanced by voxel-based analysis and automatic volume of interest analysis based on a population template. Both analytical methods can aid the objective diagnosis of epileptogenic foci. Ictal SPECT was analyzed using subtraction methods and voxel-based analysis. Rapidity of injection of tracers, ictal EEG findings during injection of tracer, and repeated ictal SPECT were important technical issues of ictal SPECT. SPECT can also be used in the evaluation of validity of Wada test.

Compensatory change of opposite hippocampus after temporal lobe surgery in patients with temporal lobe epilepsy Evidence from single-voxel proton MR spectroscopy

  • Lee, Sang-Hyun;Chang, Kee-Hyun;Chung, Chun-Kee;Song, In-Chan;Han, Moon-Hee
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.172-172
    • /
    • 2001
  • Purpose: To evaluate compensatory change of opposite hippocampus after temporal lobe surgery in th patient with temporal lobe epilepsy by using single-voxel proton MR spectroscopy. Method: Eighteen patients with intractable temporal lobe epilepsy (TLE) whose MR diagnos was unilateral hippocampal sclerosis (n=11) or localized unilateral anterior temporal lobe lesio (n=7) and who underwent anterior temporal lobectomy were included in the study. Singl proton MRS of opposite hippocampus was carried out on the same day or within 1 week af MR imaging before temporal lobe surgery and after over 1-year post-surgical follow-u Single voxel proton MRS were acquired using GE signa 1.5T scanner and spectrosco system (TR, 1500-2, 000: TE, 136-144). Region of interest (ROI) was placed in a simitar position for all examination to cover the medial temporal lobes including most of the head an body of hippocampus and a part of amygdala, the parahippocampal gyrus. The MR spectr were evaluated with a focus on the metabolite ratio of N-acetylaspartate (NAA choline-containing phospholipids (Cho), creatine (Cr). The metabolite ratios of NAA/ Cr were calculated from the relative peak height measurement. We evaluated change of th intensity ratio NAA/Cr between before and after surgery, to simplify quantification acro patients, because observed decreases in the ratio of NAA/Cr can be interpreted in terms o neuronal or axonal damage.

  • PDF

Functional Reorganization Associated with Semantic Language Processing in Temporal Lobe Epilepsy Patients after Anterior Temporal Lobectomy: A Longitudinal Functional Magnetic Resonance Image Study

  • Kim, Jae-Hun;Lee, Jong-Min;Kang, Eun-Joo;Kim, June-Sic;Song, In-Chan;Chung, Chun-Kee
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.1
    • /
    • pp.17-25
    • /
    • 2010
  • Objective: The focus of this study is brain plasticity associated with semantic aspects of language function in patients with medial temporal lobe epilepsy (mTLE) Methods: Using longitudinal functional magnetic resonance imaging (fMRI), patterns of brain activation were observed in twelve left and seven right unilateral mTLE patients during a word-generation task relative to a pseudo-word reading task before and after anterior temporal section surgery. Results: No differences were observed in precentral activations in patients relative to normal controls (n = 12), and surgery did not alter the phonological-associated activations. The two mTLE patient groups showed left inferior prefrontal activations associated with semantic processing (word-generation>pseudo-word reading), as did control subjects. The amount of semantic-associated activation in the left inferior prefrontal region was negatively correlated with epilepsy duration in both patient groups. Following temporal resection, semantic-specific activations in inferior prefrontal region became more bilateral in left mTLE patients, but more left-lateralized in right mTLE patients. The longer the duration of epilepsy in the patients, the larger the increase in the left inferior prefrontal semantic-associated activation after surgery in both patient groups. Semantic activation of the intact hippocampus, which had been negatively correlated with seizure frequency, normalized after the epileptic side was removed. Conclusion: These results indicate alternation of semantic language network related to recruitment of left inferior prefrontal cortex and functional recovery of the hippocampus contralateral to the epileptogenic side, suggesting an intra- and inter-hemispheric reorganization following surgery.

Voxel-based Morphometry (VBM) Based Assessment of Gray Matter Loss in Medial Temporal Lobe Epilepsy: Comparison with FDG PET (화소기반 형태분석 방법을 이용한 내측측두엽 간질환자의 회백질 부피/농도 감소평가; FDG PET과의 비교)

  • Kang, Hye-Jin;Lee, Ho-Young;Lee, Jae-Sung;Kang, Eun-Joo;Lee, Sang-Gun;Chang, Kee-Hyun;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.1
    • /
    • pp.30-40
    • /
    • 2004
  • Purpose: The aims of this study were to find brain regions in which gray matter volume was reduced and to show the capability of voxel-based morphometry (VBM) analysis for lateralizing epileptogenic zones in medial temporal lobe epilepsy (mTLE). The findings were compared with fluorodeoxyglucose positron omission tomography (FDG PET). Materials and Methods: MR T1-weighted images of 12 left mTLE and 11 right mTLE patients were compared with those of 37 normal controls. Images were transformed to standard MNI space and averaged in order to create study-specific brain template. Each image was normalized to this local template and brain tissues were segmented. Modulation VBM analysis was performed in order to observe gray matter volume change. Gray matter was smoothed with a Gaussian kernel. After these preprocessing, statistical analysis was peformed using statistical parametric mapping software (SPM99). FDG PET images were compared with those of 22 normal controls using SPM. Results: Gray matter volume was significantly reduced in the left amygdala and hippocampus in left mTLE. In addition, volume of cerebellum, anterior cingulate, and fusiform gyrus in both sides and left insula was reduced. In right mTLE, volume was reduced significantly in right hippocampus. In contrast, FDG uptake was decreased in broad areas of left or right temporal lobes in left TLE and right TLE, respectively. Conclusions: Gray matter loss was found in the ipsilateral hippocampus by modulation VBM analysis in medial temporal lobe epilepsy. This VBM analysis might be useful in lateralizing the epileptogenic zones in medial temporal lobe epilepsy, while SPM analysis of FDG PET disclosed hypometabolic epileptogenic zones.

Nuclear Imaging in Epilepsy (간질에서의 핵의학 영상)

  • Chun, Kyung-Ah
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.97-101
    • /
    • 2007
  • Correct localization of epileptogenic zone is important for the successful epilepsy surgery. Both ictal perfusion single photon emission computed tomography (SPECT) and interictal F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) can provide useful information in the presurgical localization of intractable partial epilepsy. These imaging modalities have excellent diagnostic sensitivity in medial temporal lobe epilepsy and provide good presurgical information in neocortical epilepsy. Also provide functional information about cellular functions to better understand the neurobiology of epilepsy and to better define the ictal onset zone, symptomatogenic zone, propagation pathways, functional deficit zone and surround inhibition zones. Multimodality imaging and developments in analysis methods of ictal perfusion SPECT and new PET ligand other than FDG help to better define the localization.

Intraoperative monitoring of somatosensory and visual evoked potentials for detecting posterior cerebral artery infarction during anteromesial temporal resection

  • Seo, Suyeon;Kim, Dong Jun;Lee, Chae Young
    • Annals of Clinical Neurophysiology
    • /
    • v.22 no.2
    • /
    • pp.104-108
    • /
    • 2020
  • We performed intraoperative neurophysiological monitoring (INM) during anteromesial temporal resection (AMTR) in a patient with lesional temporal lobe epilepsy. INM revealed a sudden decrease in N20 waves in somatosensory evoked potentials (SSEPs) and poor P100 waves in visual evoked potentials (VEPs). These changes developed after applying electrocoagulation in the right mesial temporal areas. Postoperative brain magnetic resonance imaging demonstrated right thalamic and medial occipital infarctions. SSEPs and VEPs monitoring can be useful for detecting posterior cerebral artery infarction in AMTR.

Comparison of rCBF between Patients with Medial Temporal Lobe Epilepsy and Normal Controls using ${H_2}^{15}O\;PET$ (내측 측두엽 간질환자와 정상인의 ${H_2}^{15}O\;PET$을 이용한 뇌 혈류량 비교)

  • Kang, Eun-Joo;Lee, Jae-Sung;Nam, Hyun-Woo;Lee, Sang-Kun;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.3
    • /
    • pp.155-165
    • /
    • 2002
  • Purpose: The aim of this study was to identify the brain areas whose regional cerebral blood flow (rCBF) was changed in medial temporal lobe epilepsy (mTLE) using ${H_2}^{15}O-PET$. Materials and Methods: 12 patients with mTLE (6 left, 6 right mTLE) and 6 normal controls were scanned during a fixation baseline period and a sensory-motor condition where subjects pressed a button to an upward arrow. A voxel-based analysis using SPM99 software was peformed to compare the patient groups with the normal controls for the rCBF during fixation baseline period and for relative changes of rCBF during the sensory-motor task relative to fixation. Results: During the fixation baseline, a significant reduction of rCBF was found posterior insula bilaterally and right frontopolar regions in right mTLE patients compared to the normal controls. In left mTLE patients, the reduction was found in left frontopolar and temporal legions. During the sensory-motor task, rCBF increase over the fixation period, was reduced in left frontal and superior temporal legions in the right mTLE patients whereas in various areas of right hemisphere in left mTLE patients, relative to normal controls. However, the increased rCBF was also found in the left inferior parietal and anterior thalamic/fornix regions in both right and left mTLE patients compared to normal controls. Conclusion: Epilepsy induced changes were found not only in relative increase/decrease of rCBF during a simple sensory-motor control condition relative to a fixation rest condition but also in the relative rCBF distribution during the rest period.

Automatic Interpretation of F-18-FDG Brain PET Using Artificial Neural Network: Discrimination of Medial and Lateral Temporal Lobe Epilepsy (인공신경회로망을 이용한 뇌 F-18-FDG PET 자동 해석: 내.외측 측두엽간질의 감별)

  • Lee, Jae-Sung;Lee, Dong-Soo;Kim, Seok-Ki;Park, Kwang-Suk;Lee, Sang-Kun;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.3
    • /
    • pp.233-240
    • /
    • 2004
  • Purpose: We developed a computer-aided classifier using artificial neural network (ANN) to discriminate the cerebral metabolic pattern of medial and lateral temporal lobe epilepsy (TLE). Materials and Methods: We studied brain F-18-FDG PET images of 113 epilepsy patients sugically and pathologically proven as medial TLE (left 41, right 42) or lateral TLE (left 14, right 16). PET images were spatially transformed onto a standard template and normalized to the mean counts of cortical regions. Asymmetry indices for predefined 17 mirrored regions to hemispheric midline and those for medial and lateral temporal lobes were used as input features for ANN. ANN classifier was composed of 3 independent multi-layered perceptrons (1 for left/right lateralization and 2 for medial/lateral discrimination) and trained to interpret metabolic patterns and produce one of 4 diagnoses (L/R medial TLE or L/R lateral TLE). Randomly selected 8 images from each group were used to train the ANN classifier and remaining 51 images were used as test sets. The accuracy of the diagnosis with ANN was estimated by averaging the agreement rates of independent 50 trials and compared to that of nuclear medicine experts. Results: The accuracy in lateralization was 89% by the human experts and 90% by the ANN classifier Overall accuracy in localization of epileptogenic zones by the ANN classifier was 69%, which was comparable to that by the human experts (72%). Conclusion: We conclude that ANN classifier performed as well as human experts and could be potentially useful supporting tool for the differential diagnosis of TLE.