• Title/Summary/Keyword: Media Encryption Algorithm

Search Result 27, Processing Time 0.01 seconds

The Analysis of New Video Conference System Based Secure Authentication

  • Jung Yong Deug;Kim Gil Choon;Jun Moon Seog
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.600-607
    • /
    • 2004
  • The paper describes the implementation of the video conferencing system using public key infrastructure which is used for user authentication and media stream encryption. Using public key infrastructure, we are able to reinforce the authentication for conference participant and block several malicious hacking while protecting conference control information. The paper shows the implementation of the transportation layer secure protocol in conformity with Korea public key authentication algorithm standard and symmetric key encryption algorithm (RC2, SEED, DES and 3DES) for media stream encryption. The feature of the paper is transportation layer secure protocol that is implemented for protection of information on a user authentication and video conference and the media streaming encryption algorithm also can be envisioned with another block encryption algorithm. The key for media streaming encryption may be safely distributed by the transportation layer secure protocol.

  • PDF

An Implementation of Authentication and Encryption of Multimedia Conference using H.235 Protocol (H.235 프로토콜에 의한 영상회의의 인증과 암호화 구현)

  • Sim, Gyu-Bok;Lee, Keon-Bae;Seong, Dong-Su
    • The KIPS Transactions:PartC
    • /
    • v.9C no.3
    • /
    • pp.343-350
    • /
    • 2002
  • This paper describes the implementation of H.235 protocol for authentication and media stream encryption of multimedia conference systems. H.235 protocol is recommended by ITU-T for H.323 multimedia conference security protocol to prevent from being eavesdropped and modified by an illegal attacker. The implementation in this paper has used password-based with symmetric encryption authentication. Media streams are encrypted using the Diffie-Hellman key exchange algorithm and symmetric encryption algorithms such as RC2, DES and Triple-DES. Also, 128-bit Advanced Encryption Standard and 128-bit Korean standard SEED algorithms are implemented for the future extension. The implemented authentication and media stream encryption has shown that it is possible to identify terminal users without exposing personal information on networks and to preserve security of multimedia conference. Also, encryption delay time and used memory are not increased even though supporting media stream encryption/decryption, thus the performance of multimedia conference system has not deteriorated.

A Study on Pipeline Implementation of LEA Encryption·Decryption Block (LEA 암·복호화 블록 파이프라인 구현 연구)

  • Yoon, Gi Ha;Park, Seong Mo
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.9-14
    • /
    • 2017
  • This paper is a study on the hardware implementation of the encryption and decryption block of the lightweight block cipher algorithm LEA which can be used for tiny devices in IoT environment. It accepts all secret keys with 128 bit, 192 bit, and 256 bit sizes and aims at the integrated implementation of encryption and decryption functions. It describes design results of applying pipeline method for performance enhancement. When a decryption function is executed, round keys are used in reverse order of encryption function. An efficient hardware implementation method for minimizing performance degradation are suggested. Considering the number of rounds are 24, 28, or 32 times according to the size of secret keys, pipeline of LEA is implemented so that 4 round function operations are executed in each pipeline stage.

Selective Encryption and Decryption Method for IVC Codec (IVC 코덱을 위한 선택적 암호화 및 복호화 방법)

  • Lee, Min Ku;Kim, Kyu-Tae;Jang, Euee S.
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.1013-1016
    • /
    • 2020
  • This paper presents a selective encryption and decryption method exploiting the start code of the IVC bitstream. The existing encryption methods for video are largely classified into two methods: Naive Encryption Algorithm (NEA) and Selective Encryption Algorithm (SEA). Since NEA encrypts the entire bitstream, it has the advantage of high security but has the disadvantage of high computational complexity. SEA improves the encryption and decryption speed compared to NEA by encrypting a part of the bitstream, but there is a problem that security is relatively low. The proposed method improves the encryption and decryption speed and the security of the existing SEA by using the start code of the IVC bitstream. As a result of the experiment, the proposed method reduces the encryption speed by 96% and the decryption speed by 98% on average compared to the NEA.

Encryption Scheme for MPEG-4 Media Transmission Exploiting Frame Dropping

  • Shin, Dong-Kyoo;Shin, Dong-Il;Shin, Jae-Wan;Kim, Soo-Han;Kim, Seung-Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.925-938
    • /
    • 2010
  • Depending on network conditions, a communication network could be overloaded when media are transmitted. Research has been carried out to lessen network overloading, such as by filtering, load distribution, frame dropping, and other methods. Among these methods, one of the most effective is frame dropping, which reduces specified video frames for bandwidth diminution. In frame dropping, B-frames are dropped and then I- and P-frames are dropped, based on the dependency among the frames. This paper proposes a scheme for protecting copyrights by encryption, when frame dropping is applied to reduce the bandwidth of media based on the MPEG-4 file format. We designed two kinds of frame dropping: the first stores and then sends the dropped files and the other drops frames in real time when transmitting. We designed three kinds of encryption methods using the DES algorithm to encrypt MPEG-4 data: macro block encryption in I-VOP, macro block and motion vector encryption in P-VOP, and macro block and motion vector encryption in I-, P-VOP. Based on these three methods, we implemented a digital rights management solution for MPEG-4 data streaming. We compared the results of dropping, encryption, decryption, and the quality of the video sequences to select an optimal method, and found that there was no noticeable difference between the video sequences recovered after frame dropping and the ones recovered without frame dropping. The best performance in the encryption and decryption of frames was obtained when we applied the macro block and motion vector encryption in I-, P-VOP.

Design of Secure Information Center Using a Conventional Cryptography

  • Choi, Jun-Hyuk;Kim Tae-Gap;Go, Byung-Do;Ryou, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.6 no.4
    • /
    • pp.53-66
    • /
    • 1996
  • World Wide Web is a total solution for multi-media data transmission on Internet. Because of its characteristics like ease of use, support for multi-media data and smart graphic user interface, WWW has extended to cover all kinds of applications. The Secure Information Center(SIC) is a data transmission system using conventional cryptography between client and server on WWW. It's main function is to support the encryption of sending data. For encryption of data IDEA(International Data Encryption Algorithm) is used and for authentication mechanism MD5 hash function is used. Since Secure Information Center is used by many users, conventional cryptosystem is efficient in managing their secure interactions. However, there are some restrictions on sharing of same key and data transmission between client and server, for example the risk of key exposure and the difficulty of key sharing mechanisms. To solve these problems, the Secure Information Center provides encryption mechanisms and key management policies.

A Study on Hardware Implementation of 128-bit LEA Encryption Block (128비트 LEA 암호화 블록 하드웨어 구현 연구)

  • Yoon, Gi Ha;Park, Seong Mo
    • Smart Media Journal
    • /
    • v.4 no.4
    • /
    • pp.39-46
    • /
    • 2015
  • This paper describes hardware implementation of the encryption block of the '128 bit block cipher LEA' among various lightweight encryption algorithms for IoT (Internet of Things) security. Round function blocks and key-schedule blocks are designed by parallel circuits for high throughput. The encryption blocks support secret-key of 128 bits, and are designed by FSM method and 24/n stage(n=1, 2, 3, 4, 8, 12) pipeline methods. The LEA-128 encryption blocks are modeled using Verilog-HDL and implemented on FPGA, and according to the synthesis results, minimum area and maximum throughput are provided.

Encryption Scheme for MPEG-4 Media Transmission Exploiting Frame Dropping (대역폭 감소를 적용한 MPEG-4 미디어 전송시의 암호화 기법 연구)

  • Shin, Dong-Kyoo;Shin, Dong-Il;Park, Se-Young
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.575-584
    • /
    • 2008
  • According to the network condition, the communication network overload could be occurred when media transmitting. Many researches are being carried out to lessen the network overload, such as the filtering, load distributing, frame dropping and many other methods. Among these methods, one of effective method is frame dropping that reduces specified video frames for bandwidth diminution. B frames are dropped and then I, P frames are dropped according to dependency among the frames in frame dropping. This paper proposes a scheme for protecting copyrights by encryption, when we apply frame dropping to reduce bandwidth of media following MPEG-4 file format. We designed two kinds of frame dropping: first one stores and then sends the dropped files and the other drops frames in real-time when transmitting. We designed three kinds of encryption methods in which DES algorithm is used to encrypt MPEG-4 data: macro block encryption in I-VOP, macro block and motion vector encryption in P-VOP, and macro block and motion vector encryption in I, P-VOP. Based on these three methods, we implemented a digital right management solution for MPEG-4 data streaming. We compared the results of dropping, encryption, decryption and quality of video sequences to select an optimal method, and there is no noticeable difference between the video sequences recovered after frame dropping and the ones recovered without frame dropping. The best performance in encryption and decryption of frames was obtained when we apply the macro block and motion vector encryption in I, P-VOP.

Development of Media Crypto Algorithm for anti-hacking into CCTV (CCTV 해킹방지를 위한 미디어 암호화 알고리즘)

  • Hwang, Seon-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.2
    • /
    • pp.98-102
    • /
    • 2013
  • There are so many CCTV in our streets, buildings and public places. Nevertheless, security methods for CCTV are rarely. This paper describes a study on developing a media crypto algorithm for anti-hacking into CCTV. H.264 codec is used to compress the video stream in CCTV systems. HIGHT algorithm provided by KISA is adopted as a crypto algorithm in our development. Other crypto methods except HIGHT could be selected by company's security police. Only some bytes in VCL(Video Coding Layer) of H.264 are encrypted to improve the performance of limited platforms, such as CCTV, WebCam, smartphone. Very fast and light crypto algorithm was developed by our researches.

Real-Time Transcoding and Advanced Encryption for 360 CCTV Streaming

  • Le, Tuan Thanh;Jeong, JongBeom;Lee, Soonbin;Jang, Dongmin;Ryu, Il-Woong;Ryu, Eun-Seok
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.144-146
    • /
    • 2019
  • Recently, according to the rapid development of surveillance information, closed-circuit television (CCTV) has become an indispensable component in security systems. A lot of advanced technologies of encryption and compression are implementing to improve the performance and security levels of the CCTV system. Especially, 360 video CCTV streaming is promising for surveillance without blind areas. However, compared to previous systems, 360 CCTV requires large bandwidth and low latency. Therefore, it requires more efficiently effort to improve the CCTV system performance. In order to meet the demands of 360 CCTV streaming, transcoding is an essential process to enhance the current CCTV system. Moreover, encryption algorithm is also an important priority in security system. In this paper, we propose a real-time transcoding solution in combination with the ARIA and AES algorithms. Experimental results prove that the proposed method has achieved around 195% speed up transcoding compared to FFMPEG libx265 method. Furthermore, the proposed system can handle multiple transcoding sessions simultaneously at high performance for both live 360 CCTV system and existing CCTV system.

  • PDF