• Title/Summary/Keyword: Mechano-Chemical Process

Search Result 30, Processing Time 0.029 seconds

Fabrication and Properties of Nano-structured Ceramics

  • Ueno, Tomoyuki;Yoshimura, Masashi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.321-322
    • /
    • 2006
  • Nano-structured ceramics, which consist of structural elements with nanometer-size crystallites, are expected to show various unusual properties. We developed the novel nano-structured ceramics which consists of $Si_3N_4$ and TiN and a self-lubricant material. The ceramics was fabricated by powder metallurgy process using mechano-chemical grinding process and short-time sintering process. Each grain size of matrix and the self-lubricant particle was under about 50 nm and a few namometer. It showed high wear resistance and low friction coefficient by controlling of microstructure.

  • PDF

$Cu(In_{1-x}Ga_x)Se_2$ Thin Film Fabrication by Powder Process

  • Song, Bong-Geun;Cho, So-Hye;Jung, Jae-Hee;Bae, Gwi-Nam;Park, Hyung-Ho;Park, Jong-Ku
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.92-92
    • /
    • 2012
  • Chalcopyrite-type Cu(In,Ga)Se2 (CIGS) is one of the most attractive compound semiconductor materials for thin film solar cells. Among various approaches to prepare the CIGS thin film, the powder process offers an extremely simple and materials-efficient method. Here, we present the mechano-chemical synthesis of CIGS compound powders and their use as an ink material for screen-printing. During the synthesis process, milling time and speed were varied in the range of 10~600 min and 100~300 rpm, respectively. Both phase evolution and powder characteristics were carefully monitored by X-ray diffraction (XRD) method, scanning electron microscope (SEM) observation, and particle size analysis by scanning mobility particle spectrometer (SMPS) and aerodynamic particle sizer (APS). We found the optimal milling condition as 200 rpm for 120 min but also found that a monolithic phase of CIGS powders without severe particle aggregation was difficult to be obtained by the mechano-chemical milling alone. Therefore, the optimized milling condition was combined with an adequate heat-treatment (300oC for 60 min) to provide the monolithic CIGS powder of a single phase with affordable particle characteristics for the preparation of CIGS thin film. The powder was used to prepare an ink for screen printing with which dense CIGS thin films were fabricated under the controlled selenization. The morphology and electrical properties of the thin films were analyzed by SEM images and hall measurement, respectively.

  • PDF

Synthesis and characterization of perovskite nano-sized (Pb, La)$TiO_3$ powder using mechano chemical process (기계화학공정을 이용한 Perovskite 구조의 (Pb, La)$TiO_3$ 나노 분말 합성 및 특성)

  • Lim, Bo-Ra-Mi;Yang, Jae-Kyo;Lee, Dong-Suk;Noh, Tae-Hyung;Seo, Jung-Hye;Lee, Youn-Seoung;Kim, Hee-Taik;Choa, Yong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.200-204
    • /
    • 2008
  • Mechano Chemical Process (MCP) skips the calcinations steps at an intermediate temperature that is always required in the conventional solid-state reaction because forming phase from raw powder is activated by mechanical energy. In this study, we prepared (Pb, La)$TiO_3$ nanopowder with perovskite structure by only high energy MCP. Especially, the PLT nanopowder was synthesized without any thermal treatment using oxides, not salts as raw powder. This process is also very simple due to dry milling method, unnecessary to dry of powder. The oxide powder was milled up to 12 hr at intervals of an hour using MCP and the pure PLT phase of perovskite structure was formed after milling time of 3 hr. And the average particle size was 20 nm with narrow distribution after milling time of 3 hr from raw powder of several $\mu m$ with inhomogeneous distribution.

Mineralogical Analysis and Mechano-Chemical Purification of Natural Silica Ore for High Purity Silica Powder

  • Park, Jesik;Lee, Churl Kyoung;Lee, Hyun-Kwon
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.306-310
    • /
    • 2016
  • To produce 4N grade high-purity silica powder from natural ore, the mineralogical characteristics of natural silica ore were investigated and their effects on the purification process were revealed. The Chinese silica mineral ore used was composed of iron and aluminum as main impurities and calcium, magnesium, potassium, sodium, and titanium as trace impurities; these trace impurities generally exist as either single oxides or complex oxides. It was confirmed that liberation and acidic washing of the impurities were highly dependent on the particle size of the ground silica ore and on its mineralogical characteristics such as the distribution and phases of existing impurities. It is suggested that appropriate size reduction of silica ore should be realized for optimized purification according to the origin of the natural silica ore. A single step purification process, the mechano-chemical washing (MCW) process, was proposed and verified in comparison with the conventional multi step washing process.

Synthesis of Titanium Carbide Nano Particles by the Mechano Chemical Process

  • Ahn, In-Shup;Park, Dong-Kyu;Lee, Yong-Hee
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.43-49
    • /
    • 2009
  • Titanium carbides are widely used for cutting tools and grinding wheels, because of their superior physical properties such as high melting temperature, high hardness, high wear resistance, good thermal conductivity and excellent thermal shock resistance. The common synthesizing method for the titanium carbide powders is carbo-thermal reduction from the mixtures of titanium oxide($TiO_2$) and carbon black. The purpose of the present research is to fabricate nano TiC powders using titanium salt and titanium hydride by the mechanochemical process(MCP). The initial elements used in this experiment are liquid $TiCl_4$(99.9%), $TiH_2$(99.9%) and active carbon(<$32{\mu}m$, 99.9%). Mg powders were added to the $TiCl_4$ solution in order to induce the reaction with Cl-. The weight ratios of the carbon and Mg powders were theoretically calculated. The TiC and $MgCl_2$ powders were milled in the planetary milling jar for 10 hours. The 40 nm TiC powders were fabricated by wet milling for 4 hours from the $TiCl_4$+C+Mg solution, and 300 nm TiC particles were obtained by using titanium hydride.

Preparation of Amine-epoxy Adducts(AEA)/Thin Multiwalled Carbon Nanotubes (TWCNTs) Composite Particles using Dry Processes

  • Jung, Hyun-Taek;Cho, Young-Min;Kim, Tae-Ho;Kim, Tae-Ann;Park, Min
    • Carbon letters
    • /
    • v.11 no.2
    • /
    • pp.107-111
    • /
    • 2010
  • We prepared the amine epoxy adducts (AEA)/thin multiwalled carbon nanotubes (TWCNTs) composite particles using nonsolvent based methods including dry mechano-chemical bonding(MCB) process and supercritical fluid (SCF) process. The resulting TWCNTs/AEA composite particles have been used as curing agents for urethane modified bispheol A type epoxy resin. The thermal, thermomechanical properties of the epoxy resins cured with TWCNTs/AEA composite particles were measured by DMA and the dispersion of CNT was characterized by SEM. Because of high degree of CNT dispersion, thermal and mechanical properties of the epoxy resin cured with TWCNTs/AEA composite particles prepared by SCF process are better than those cured with mechano-chemically prepared TWCNTs/AEA composite particles.

Fabrication of Micro-fluidic Channels using a Flexible and Rapid Surface Micro-machining Technique (유연하고 신속한 표면미세가공기술을 이용한 Micro-fluidic Channel 제작)

  • 김진산;성인하;김대은
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.603-607
    • /
    • 2002
  • Recently, the need leer transporting and manipulating minute amount of fluids in microscale channels (so-called micro-fluidics) has been increasing, especially in biotechnology and biochemical processing. This work demonstrates that the mechano-chemical process which consists of mechanical abrasive action combined with chemical process can be used to fabricate micro-fluidic channels more rapidly and cost effectively than other methods. In this work, capillary filling of fluids in micro-channels was investigated by theoretical approaches and experiments. From the experimental results, it is expected that a complex micro-fluidic system can be fabricated using the micro- fabrication technique and microsystem packaging method described in this work.

  • PDF

Non-lithographic Micro-structure Fabrication Technology and Its Application (Non-lithography 방법에 의한 마이크로 구조물 제작 및 응용)

  • 성인하;김진산;김대은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.956-959
    • /
    • 2002
  • In this work, a new non-lithographic micro-fabrication technique is presented. The motivation of this work is to overcome the demerits of the most commonly used photo-lithographic techniques. The micro-fabrication technique presented in this work is a two-step process which consists of mechanical scribing followed by chemical etching. This method has many advantages over other micro-fabrication techniques since it is simple, cost-effective, rapid, and flexible. Also, the technique can be used to obtain a metal structure which has sub-micrometer width patterns. In this paper, the concept of this method and its application to microsystem technology are described.

  • PDF