• 제목/요약/키워드: Mechanisms of uptake

검색결과 165건 처리시간 0.028초

옥수수(Zea mays L.) 자엽초 조직 절편에서 n-Octanol에 의한 옥신 극성 이동 억제 (Specific Inhibition of Polar Auxin Transport by n-Octanol in Maize Coleoptiles)

  • 윤인선
    • Journal of Plant Biology
    • /
    • 제36권1호
    • /
    • pp.67-74
    • /
    • 1993
  • Both polar and gravity-induced lateral transport of auxin was markedly reduced in corn coleoptile segments by octanol treatment. Octanol enhance net auxin uptake without affecting that of benzoic acid, suggesting that the effect did not result from a nonspecific action on general membrane permeability. Since naphthylphthalamic acid (NPA) action on both transport and net uptake of auxin was substantially decreased in the presence of octanol, a specific interaction of octanol with the NPA site (efflux carrier) can be postulated. Studies on in vitro binding of NPA to membrane vesicles indicated that octanol did not interfere with NPA binding. When basipetal transport of auxin was impared by plasmolysis, octanol still inhibited auxin transport in the plasmolyzed tissues. The results ruled out the possibility of octanol acting at the plasmodesmata. Kinetic analysis of growth indicated that IAA-sustained growth was rapidly blocked by octanol implicating a common system by which auxin transport is linked to auxin action. Possible mechanisms for octanol action will be discussed.

  • PDF

Influence of Ectomycorrhizal Colonization on Cesium Uptake by Pinus densiflora Seedlings

  • Ogo, Sumika;Yamanaka, Takashi;Akama, Keiko;Nagakura, Junko;Yamaji, Keiko
    • Mycobiology
    • /
    • 제46권4호
    • /
    • pp.388-395
    • /
    • 2018
  • Radionuclides were deposited at forest areas in eastern parts of Japan following the Fukushima Daiichi Nuclear Power Plant incident in March 2011. Ectomycorrhizal (EM) fungi have important effects on radiocaesium dynamics in forest ecosystems. We examined the effect of colonization by the EM fungus Astraeus hygrometricus on the uptake of cesium (Cs) and potassium (K) by Pinus densiflora seedlings. Pine seedlings exhibited enhanced growth after the EM formation due to the colonization by A. hygrometricus. Additionally, the shoot Cs concentration increased after the EM formation when Cs was not added to the medium. This suggests that A. hygrometricus might be able to solubilize Cs fixed to soil particles. Moreover, the shoot K concentration increased significantly after the EM formation when Cs was added. However, there were no significant differences in the root K concentration between EM and non-EM seedlings. These results suggest that different mechanisms control the transfer of Cs and K from the root to the shoot of pine seedlings.

Effects of High Glucose Levels on the Protein Kinase C Signal Transduction Pathway in Primary Cultured Renal Proximal Tubule Cells

  • Han, Ho-Jae;Kang, Ju-Won;Park, Kwon-Moo
    • The Korean Journal of Physiology
    • /
    • 제30권2호
    • /
    • pp.257-267
    • /
    • 1996
  • Diabetes mellitus is associated with a wide range of pathophysiologic changes in the kidney. This study was designed to examine the mechanisms by which glucose modulates the expression of polarized membrane transport functions in primary cultured rabbit renal proximal tubule cells. Results are as follows: The rate of 30 minute $Rb^{+}$ uptake was significantly higher($137.76{\pm}5.40%$) in primary renal tubular cell cultures treated with 20 mM glucose than that of 5 mM glucose. Not the level of mRNA for the ${\alpha}$ subunit of Na, K-ATPase but that of ${\beta}$ subunit was elevated in primary cultures treated with high glucose. The initial rate of methyl-${\alpha}$-D-glucopyranoside(${\alpha}$-MG) uptake was significantly lower($71.91{\pm}3.02%$) in monolayers treated with 20 mM glucose than that of 5 mM glucose. There was a tendency of an increase in phlorizin binding site in cells treated with 5 mM glucose. However, 3-O-methyl-D-glucose(3-O-MG) uptake was not affected by glucose concentration in culture media. TPA inhibited $Rb^{+}$ uptake by $63.61{\pm}1.94\;and\;45.80{\pm}1.36%$ and ${\alpha}$-MG uptake by $48.54{\pm}3.69\;and\;41.87{\pm}6.70%$ in the cells treated with 5 and 20 mM glucose, respectively. Also TPA inhibited mRNA expression of Na/glucose cotransporter in cells grown in 5mM glucose medium. cAMP significantly stimulated ${\alpha}$-MG uptake by $114.65{\pm}5.70%$ in cells treated with 5mM glucose, while it did not affect ${\alpha}$-MG uptake in cell treated with 20 mM glucose. However, cAMP inhibited $Rb^{+}$ uptake by $76.69{\pm}4.16\;and\;66.87{\pm}2.41%$ in cells treated with 5 and 20 mM glucose, respectively. In conclusion, the activity of the renal proximal tubular Na,K-ATPase is elevated in high glucose concentration. In contrast, the activity of the Na/glucose cotransport system is inhibited. High glucose may in part affect the activity of the Na,K-ATPase and the Na/glucose cotransport system by controlling the protein kinase C and/or A signal transduction pathway in primary cultured renal proximal tubule cells.

  • PDF

2,7-Phloroglucinol-6,6-Bieckol의 3T3-L1 지방세포에서 GLUT4 활성화를 통한 포도당 흡수 증진 효과 (2,7-Phloroglucinol-6,6-Bieckol Increases Glucose Uptake by Promoting GLUT4 Translocation to Plasma Membrane in 3T3-L1 Adipocytes)

  • 이현아;한지숙
    • 생명과학회지
    • /
    • 제31권8호
    • /
    • pp.729-735
    • /
    • 2021
  • 제 2 형 당뇨병은 조직의 포도당 흡수 능력에 이상이 있을 때 발생하며, 인슐린에 의한 포도당 섭취와 신진대사는 혈당을 유지하는 기본 활동이며 포도당 섭취는 인슐린이 세포 표면의 수용체에 결합하여 시작되는 다양한 신호 단계를 거친다. 본 연구는 Ecklonia cava에서 분리된 활성 화합물 인 2,7-phloroglucinol-6,6-bieckol이 3T3-L1 지방 세포에서 인슐린 신호전달체계에 따른 포도당 흡수 증가에 미치는 영향에 대한 것이다. 2,7-phloroglucinol-6,6-bieckol 은 3T3-L1 지방 세포에서 농도의존적으로 GLUT4의 발현을 증가시켜 원형질막에서의 glucose uptake 를 증가시켰다. 이는 인슐린 신호 전달 경로에서 2,7-phloroglucinol-6,6-bieckol 에 의한 IRS-1, AKT의 인산화 및 PI3K 활성화에 의한 것이다. PHB는 또한 AMPK 인산화와 활성화를 자극했다. 2,7-phloroglucinol-6,6-bieckol에 의한 PI3K/AKT 및 AMPK 경로의 인산화 및 활성화는 wortmannin (PI3K 억제제) 및 화합물 C (AMPK 억제제)를 사용하여 확인하였다. 본 연구에서 2,7-phloroglucinol-6,6-bieckol 이 3T3-L1 지방 세포에서 PI3K 및 AMPK 경로를 통해 원형질막으로의 GLUT4 전위를 촉진함으로써 포도당 흡수를 증가시킬 수 있음을 나타내었다. 이러한 결과는 2,7-phloroglucinol-6,6-bieckol 가 인슐린 감수성을 개선하는 데 도움이 될 수 있음을 시사한다.

ATAD2 expression increases [18F]Fluorodeoxyglucose uptake value in lung adenocarcinoma via AKT-GLUT1/HK2 pathway

  • Sun, Tong;Du, Bulin;Diao, Yao;Li, Xuena;Chen, Song;Li, Yaming
    • BMB Reports
    • /
    • 제52권7호
    • /
    • pp.457-462
    • /
    • 2019
  • [18F]Fluorodeoxyglucose (FDG) PET/CT imaging has been widely used in the diagnosis of malignant tumors. ATPase family AAA domain-containing protein 2 (ATAD2) plays important roles in tumor growth, invasion and metastasis. However, the relationship between [18F]FDG accumulation and ATAD2 expression remains largely unknown. This study aimed to investigate the correlation between ATAD2 expression and [18F]FDG uptake in lung adenocarcinoma (LUAD), and elucidate its underlying molecular mechanisms. The results showed that ATAD2 expression was positively correlated with maximum standardized uptake value ($SUV_{max}$), total lesion glycolysis (TLG), glucose transporter type 1 (GLUT1) expression and hexokinase2 (HK2) expression in LUAD tissues. In addition, ATAD2 knockdown significantly inhibited the proliferation, tumorigenicity, migration, [18F]FDG uptake and lactate production of LUAD cells, while, ATAD2 overexpression exhibited the opposite effects. Furthermore, ATAD2 modulated the glycometabolism of LUAD via AKT-GLUT1/HK2 pathway, as assessed using LY294002 (an inhibitor of PI3K/AKT pathway). In summary, to explore the correlation between ATAD2 expression and glycometabolism is expected to bring good news for anti-energy metabolism therapy of cancers.

Phosphate solubilization by phosphate solubilizing microorganisms: insight into the mechanisms

  • Buddhi Charana, Walpola;Kodithuwakku Kankanange Indika Upali, Arunakumara;Min Ho, Yoon
    • 농업과학연구
    • /
    • 제49권3호
    • /
    • pp.463-481
    • /
    • 2022
  • Phosphorous (P) is considered to be one of the key essential elements demanded by crop plants. Approximately 70 - 90% of phosphatic fertilizers applied to crops are fixed in soil as Ca, Fe, and Al metal cations, which are insoluble and thus not readily available for plant uptake. Therefore, most soils are deficient in plant available P. This is usually rectified by applying phosphate fertilizers continuously, although this is not economically viable or environmentally acceptable. The present paper reviews the mechanisms involved with phosphate solubilization and mineralization by phosphate solubilizing microorganisms (PSMs) with the associated factors that determine the success. PSMs are effectively involved in mediating the bioavailability of soil P. Their contribution includes mineralization of organic P solubilization of inorganic P minerals, and storing sizable amounts of P in biomass through different mechanisms such as the production of organic and inorganic acids, H2S, siderophores, exopolysaccharides, and production of enzymes such as phosphatases, phytase, and phosphonatases/C-P lyases, which are capable of chelating the metal ions, forming complexes, and making plant available P. PSMs manifest a wide range of metabolic functions in different environments, resulting in significantly higher plant growth, enhanced soil properties, and increased biological activities. Therefore, development of bio-inoculants with efficient novel PSM strains and further investigations on exploring such strains from diverse ecological niches with multifunctional plant-growth-promoting traits are needed.

The Roles of Arachidonic Acid and Calcium in the Angiotensin II-induced Inhibition of $Na^+$ Uptake in Renal Proximal Tubule Cells

  • Park, Soo-Hyun;Koh, Hyun-Joo;Lee, Yeun-Hee;Son, Chang-Ho;Park, Min-Kyoung;Lee, Young-Jae;Han, Ho-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권1호
    • /
    • pp.83-91
    • /
    • 1999
  • Angiotensin II (ANG II) has a biphasic effect on $Na^+$ transport in proximal tubule: low doses of ANG II increase the $Na^+$ transport, whereas high doses of ANG II inhibit it. However, the mechanisms of high dose ANG II-induced inhibition on $Na^+$ uptake are poorly understood. Thus the aim of the present study was to investigate signal transduction pathways involved in the ANG II-induced inhibition of $Na^+$ uptake in the primary cultured rabbit renal proximal tubule cells (PTCs) in hormonally defined serum-free medium. ANG II $(10^{-9}\;M)-induced$ inhibition of $Na^+$ uptake was blocked by losartan $(10^{-8}\;M,\;AT_1\;antagonist),$ but not by PD123319 $(10^{-8}\;M,\;AT_2\;antagonist)$ (P<0.05). ANG II-induced inhibition of $Na^+$ uptake was also completely abolished by neomycin $(10^{-4}\;M,$ PLC inhibitor), W-7 $(10^{-4}\;M,$ calmodulin antagonist), and $AACOCF_3\;(10^{-6}\;M,\;PLA_2\;inhibitor)$ (P<0.05). ANG II significantly increased $[^3H]arachidonic$ acid (AA) release compared to control. The ANG II-induced $[^3H]AA$ release was blocked by losartan, $AACOCF_3,$ neomycin, and W-7, but not by PD123319. ANG II-induced $[^3H]AA$ release in the presence of extracellular $Ca^{2+}$ was greater than in $Ca^{2+}-free$ medium, and it was partially blocked by TMB-8 $(10^{-4}\;M,$ intracelluar $Ca^{2+}$ mobilization blocker). However, in the absence of extracellular $Ca^{2+},$ it was completely blocked by TMB-8. In addition, econazole $(10^{-6}\;M,$ cytochrome P-450 monooxygenase inhibitor) and indomethacin $(10^{-6}\;M,$ cyclooxygenase inhibitor) blocked ANG II-induced inhibition of $Na^+$ uptake, but NGDA $(10^{-6}\;M,$ lipoxygenase inhibitor) did not affect it. In conclusion, $PLA_2-mediated$ AA release is involved in ANG II-induced inhibition of $Na^+$ uptake and is modulated by $[Ca^{2+}]_i$ in the PTCs.

  • PDF

청미래덩굴 잎 물추출물이 처리된 HepG2 세포에서의 포도당흡수기전 연구 (Study of the mechanisms underlying increased glucose absorption in Smilax china L. leaf extract-treated HepG2 cells)

  • 강윤환;김대중;김경곤;이성미;최면
    • Journal of Nutrition and Health
    • /
    • 제47권3호
    • /
    • pp.167-175
    • /
    • 2014
  • 본 연구에는 SCLE를 이용하여 시도된 바가 없는 glucose uptake 유도 실험을 수행하여 HepG2 세포에서 포도당흡수가 증가함을 확인하였다. 또한 이런 포도당의 흡수는 HNF-$1{\alpha}$라는 transcription factor의 활성화를 통해 GLUT-2의 발현을 증가시키기 때문인 것을 실험적으로 증명하였다. 뿐만 아니라 Bacillus stearothermophilus 유래의 GK를 이용하여 활성을 측정한 결과 SCLE가 직접적으로 GK를 활성화하여 포도당의 인산화에 영향을 주는 것을 확인할 수 있었으며 그 실험결과들은 Fig. 8에서 도식화 하였다. 본 연구를 통해 SCLE가 ${\alpha}$-glucosidase inhibition 활성에 의한 혈당의 개선과 당뇨예방 효과뿐만 아니라 다양한 세포내 기전을 통해 혈당 및 당뇨의 개선을 유도할 수 있음을 확인하였고, 이는 SCLE가 neutraceuticals 소재로서의 개발가치가 높음을 시사한다.

Minimal Amount of Insulin Can Reverse Diabetic Heart Function: Sarcoplasmic Reticulum $Ca^{2+}$ Transport and Phospholamban Protein Expression

  • Kim, Hae-Won;Cho, Yong-Sun;Lee, Yun-Song;Lee, Eun-Hee;Lee, Hee-Ran
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권2호
    • /
    • pp.175-182
    • /
    • 1999
  • In the present study, the underlying mechanisms for diabetic functional derangement and insulin effect on diabetic cardiomyopathy were investigated with respect to sarcoplasmic reticulum (SR) $Ca^{2+}-ATPase$ and phospholamban at the transcriptional and translational levels. The maximal $Ca^{2+}$ uptake and the affinity of $Ca^{2+}-ATPase$ for $Ca^{2+}$ were decreased in streptozotocin-induced diabetic rat cardiac SR, however, even minimal amount of insulin could reverse both parameters. Levels of both mRNA and protein of phospholamban were significantly increased in diabetic rat hearts, whereas the mRNA and protein levels of SR $Ca^{2+}-ATPase$ were significantly decreased. In case of phospholamban, insulin treatment reverses these parameters to normal levels. Minimal amount of insulin could reverse the protein levels; however, it could not reverse the mRNA level of SR $Ca^{2+}-ATPase$ at all. Thus, the decreased SR $Ca^{2+}$ uptake appear to be largely attributed to the decreased SR $Ca^{2+}-ATPase$ level, which is further impaired due to the inhibition by the increased level of phospholamban. These results indicate that insulin is involved in the control of intracellular $Ca^{2+}$ in the cardiomyocyte through multiple target proteins via multiple mechanisms for the decrease in the mRNA for both SR $Ca^{2+}-ATPase$ and phospholamban which are unknown and needs further study.

  • PDF

Helicobacter pylori 독소에 의한 세포의 공포형성에 미치는 생약혼합물의 영향 (Effect of Leweifang on HeLa Cell Vacuolation Induced by Helicobacter.pylori cytotoxin)

  • 권동렬;채감;손윤희;남경수
    • 생약학회지
    • /
    • 제33권1호통권128호
    • /
    • pp.13-17
    • /
    • 2002
  • Helicobacter pylori infection is associated with type B gastritis, peptic ulcer, and gastric cancer. The vacuolation of cells induced by H. pylori is thought to be essential for the initiation and maintenance of gastric infection. The roles of H. pylori cytotoxin, urease, and ammonia in the vacuolation of HeLa cells were determined. Ammonium chloride augmented the neutral red uptake induced by H. pylori toxin. Acetohydroxamic acid (AHA) failed to block the neutral red uptake induced by H. pylori toxin. Leweifang significantly prevented the vacuolation of HeLa cells induced by H. pylori toxin or H. pylori toxin and ammonium chloride. Further investigation is required to determine the mechanisms of Leweifang for the inhibition of vacuole formation of eukaryotic cells in response to the H. pylori toxin.