• Title/Summary/Keyword: Mechanical tests

Search Result 4,900, Processing Time 0.042 seconds

Study on a design and characteristics tests of polymeric insulators for subway (지하철 고분자 지지애자의 설계 및 특성 평가)

  • Han, Se-Won;Cho, Han-Goo;Song, Hong-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.514-517
    • /
    • 2003
  • Polymeric suspended insulators for subway and electrical track line had been designed and manufactured. The main elements to design polymeric insulators were the insulation ability and the optimal structure. To get the insulation ability, electrical and mechanical tests according to standards had done on housing rubbers and FRP cores and selected the sample with best properties as a insulator. The insulator shape and fitting parts with minimum electrical stress was simulated by FEM electrical field analysis program. The manufactured insulator set had been tested and estimated the electrical and mechanical according to ES and KS, and showed good characteristics in these tests.

  • PDF

Evaluation of Material Characteristics by Micro/Nano Indentation Tests (마이크로/나노 압입시험에 의한 재료특성평가)

  • Lee, Hyung-Yil;Lee, Jin-Haeng
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.805-816
    • /
    • 2008
  • The present work reviews the methods to evaluate elastic-plastic material characteristics by indentation tests. Especially the representative stress and strain values used in some papers are critically analyzed. The values should not only represent the load-depth curve, but also represent the whole of deformed material around the impression. We briefly introduce other indentation techniques to evaluate residual stresses, creep properties, and fracture toughness. We also review some technical problems that are related to the accuracy issues in indentation tests.

Qualification Test of a Main Coolant Pump for SMART Pilot (SMART 연구로 주냉각재펌프의 검증시험)

  • Park, Sang-Jin;Yoon, Eui-Soo;Oh, Hyoung-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.858-865
    • /
    • 2006
  • SMART Pilot is a multipurpose small capacity integral type reactor. Main coolant pump (MCP) of SMART Pilot is a canned-motor-type axial pump to circulate the primary coolant between nuclear fuel and steam generator in the primary system. The reactor is designed to operate under condition of $310^{\circ}C$ and 14.7MPa. Thus MCP has to be tested under same operating condition as reactor design condition to verify its performance and safety. In present wort a test apparatus to simulate real operating situations of the reactor has been designed and constructed to test MCP. And then functional tests, performance tests, and endurance tests have been carried out upon a prototype MCP. Canned motor characteristics, homologous head/torque curves, coast-down curves, NPSH curves and lift-time performance variations were obtained from the qualification test as well as hydraulic performance characteristics of MCP.

The Perforation Behavior of the Anodized AI Light Armor under High Velocity Impact

  • Sohn, Se-Won;Lee, Doo-Sung;Kim, Hee-Jae;Hong, Sung-Hee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.45-50
    • /
    • 2003
  • In order to investigate the effect of surface treatment (Anodizing) and rolling on AI 5083-H131 alloy, under hyper velocity impact, a ballistic testing was conducted. Ballistic resistance of these materials was measured by a protection ballistic limit ($V_{50}$)' a statistical velocity with 50% probability of penetration. Perforation behavior and ballistic tolerance, described by penetration modes, were respectfully observed, by $V_{50}$ test and Projectile Through Plates (PTP) test at velocities greater than $V_{50}$. PTP tests were conducted with 0$^{\circ}$ obliquity at room temperature using 5.56mm ball projectiles. $V_{50}$ tests with 0$^{\circ}$ obliquity were also done with projectiles that were able to achieve near or complete penetration during PTP tests. Resistance to penetration, and penetration modes of Al 5052-H34 alloy were compared to those of Al 5083-H 131 alloy.

A Design Guide for Composite Laminates by the Compressive after Impact Tests (충격후 잔류압축강도시험에 의한 복합재료 적층판의 설계)

  • 정태은;박경하;류정주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2105-2113
    • /
    • 1995
  • The compressive tests under impact conditions were performed to establish a design guide for impact damage tolerance. The composition of layup was selected for the real cases of composite aircraft structure. The energy level of visible of visible damage threshold was determined as 7 Joules. It was found that the normalized bending stiffnesses in the direction of closely fixed boundary affected the area of damage. Graphite/epoxy used in the tests exhibited 60% reduction in compression strength at the energy level of visible damage threshold. Wet-conditioned specimens represented 9% reduction in residual compressive strength in comparison with room temperature ambient specimens. In this study, a design factor of 2.1 was proposed for the low velocity impact damage.

New Frontiers in Hard Materials Testing

  • Gee, Mark;Gant, Andrew;Morrell, Roger;Roebuck, Bryan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.885-886
    • /
    • 2006
  • Significant advances in mechanical testing for hard materials are discussed in this paper. There are three specific areas that are covered. In the measurement of fracture toughness factors such as the control of slow crack growth to produce strating cracks, and evaluating reproducibility and repeatability of tests have been recently examined. The miniaturization of tests reduces the amount of material that is used in testing, improves the throughput of tests, and also improves cost effectiveness. New techniques such as stepwise testing and micro scratch testing have contributed to significant additions to the knowledge of the wear mechanisms that operate in these materials.

  • PDF

Determination of the elastic properties in CFRP composites: comparison of different approaches based on tensile tests and ultrasonic characterization

  • Munoz, Victor;Perrin, Marianne;Pastor, Marie-Laetitia;Welemane, Helene;Cantarel, Arthur;Karama, Moussa
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.249-261
    • /
    • 2015
  • The mechanical characterization of composite materials is nowadays a major interest due to their increasing use in the aeronautic industry. The design of most of these materials is based on their stiffness, which is mainly obtained by means of tensile tests with strain gauge measurement. For thin laminated composites, this classical method requires adequate samples with specific orientation and does not provide all the independent elastic constants. Regarding ultrasonic characterization, especially immersion technique, only one specimen is needed and the entire determination of the stiffness tensor is possible. This paper presents a study of different methods to determine the mechanical properties of transversely isotropic carbon fibre composite materials (gauge and correlation strain measurement during tensile tests, ultrasonic immersion technique). Results are compared to ISO standards and manufacturer data to evaluate the accuracy of these techniques.

The Improvement of Fatigue Properties by 2-step Shot Peening (2단쇼트피닝에 의한 피로특성의 향상)

  • 이승호;심동석
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.475-479
    • /
    • 2003
  • In this study, to investigate the effects of 2-step shot peening at the surface of spring steel, tests are conducted on spring steel and shot peened specimens. Various tests are accomplished to evaluate mechanical properties influenced by shot peening process, and fatigue tests are also performed to evaluate the improvement of fatigue strength. And then the residual stresses are examined. The mechanical properties of material did not change so much by shot peening. However, the fatigue strength of notched specimen remarkably increased. In the case of 1-step shot peening, fatigue strength increased by about 20% than unpeened specimen. Especially, in the case of 2-step shot peening, fatigue strength increased by about 40%, because the residual compressive stress at surface was higher than that of 1-step shot peened specimen. The fatigue strength and life are closely related to the value and position of maximum compressive residual stress by shot peening.

Segmented mandrel tests of as-received and hydrogenated WWER fuel cladding tubes

  • Kiraly, Marton;Horvath, Marta;Nagy, Richard;Ver, Nora;Hozer, Zoltan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2990-3002
    • /
    • 2021
  • The mechanical interaction between the fuel pellet and the cladding tube of a nuclear fuel rod is a very important for safety studies as this phenomenon could lead to fuel failure and release of radioactivity. To investigate the ductility of cladding tubes used in WWER type nuclear power plants, several mandrel tests were performed in the Centre for Energy Research (EK). This modified mandrel test was used to model the mechanical interaction between the fuel pellet and the cladding using a segmented tool. The tests were conducted at room temperature and at 300 ℃ with inactive as-received and hydrogenated cladding ring samples. The results show a gradual decrease in ductility as the hydrogen content increases, the ductile-brittle transition was seen above 1500 ppm hydrogen absorbed.

Scuffing and Wear of the Vane/Roller Surfaces for Rotary Compressor Depending on Several Sliding Condition

  • Lee, Y.Z.;Oh, S.D.;Kim, J.W.;Kim, C.W.;Choi, J.K.;Lee, I.J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.227-228
    • /
    • 2002
  • One of the serious challenges in developing rotary compressor with HFC refrigerant is the prediction of scuffing times and wear amounts between vane and roller surface. In this study, the tribological characteristics of sliding surfaces using roller-vane geometry of rotary compressor were investigated. The sliding tests were carried out under various sliding speeds, normal loads and surface roughness. During the tests, friction force, wear scar width, time to failure, surface temperature, and surface roughness were monitored. Because severe wear was occurred on vane surface, TiN coating was applied on sliding surfaces to prolong the wear-life of vane-roller interfaces. From the sliding tests, it was found that there was the optimum initial surface roughness to break in and to prolong the wear life of sliding surfaces. Depending on load and speed, the protective layers, which were composed of metallic oxide and organic compound, were formed on sliding surfaces. Those would play an important role in the amount of friction and wear between roller and vane surfaces.

  • PDF