• Title/Summary/Keyword: Mechanical safety

Search Result 3,564, Processing Time 0.029 seconds

A Study on the Prediction of Nugget Diameter of Resistance Spot Welded Part of 1.2GPa Ultra High Strength TRIP Steel for Vehicle (차체용 1.2GPa급 초고장력 TRIP강판의 저항 점 용접부 너겟 지름 예측에 관한 연구)

  • Shin, Seok-Woo;Lee, Jong-Hun;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.52-60
    • /
    • 2018
  • In the automobile industry, in order to increase the fuel efficiency and conform to the safety regulations, it is necessary to make the vehicles as light as possible. Therefore, it is crucial to manufacture dual phase steels, complex phases steels, MS steels, TRIP steels, and TWIP from high strength steels with a tensile strength of 700Mpa or more. In order to apply ultra-high tensile strength steel to the body, the welding process is essential. Resistance spot welding, which is advantageous in terms of its cost, is used in more than 80% of cases in body welding. It is generally accepted that ultra-high tensile strength steel has poor weldability, because its alloy element content is increased to improve its strength. In the case of the resistance spot welding of ultra-high tensile steel, it has been reported that the proper welding condition area is reduced and interfacial fracture and partial interfacial fracture occur in the weld zone. Therefore, research into the welding quality judgment that can predict the defect and quality in real time is being actively conducted. In this study, the dynamic resistance of the weld was monitored using the secondary circuit process variables detected during resistance spot welding, and the factors necessary for the determination of the welding quality were extracted from the dynamic resistance pattern. The correlations between the extracted factors and the weld quality were analyzed and a regression analysis was carried out using highly correlated pendulums. Based on this research, a regression model that can be applied to the field was proposed.

Effect of Corrosion Environment on the Fretting Wear Corrosion of a Hinge Material( I ) (힌지재료의 찰과마멸부식에 미치는 부식환경의 영향( I ))

  • Kwak Nam-In;Lim Uh-Joh;Lee Jong-Rark
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.1 s.9
    • /
    • pp.26-32
    • /
    • 2000
  • The fretting wear corrosion characteristics between the SM20C and the SM20C, the YBsC3 and the STC4H was experimented by using radical type friction experimental device under the corrosion environment of atmosphere, neutral solution, acid solution and chemical factors of the sea water. The affection of underground water that affect fretting wear corrosion of the SM20C which is moving specimen was more sensitive at the STC4H and more insensible at the YBsC3. The affection of underground water that affect fretting wear corrosion of the STC4H was less, but in the $0.5\%\;H_2SO_4$ and $0.5\%\;HNO_3$ solutions the fretting wear corrosion of the STC4H was more large. The fretting wear corrosion of the SM20C which is moving specimen in the underground water was less than in the $3.5\%\;NaCl$, $0.5\%\;H_2SO_4$ and $0.5\%\;HNO_3$ solutions. As time passed, the fretting wear corrosion is increased in the $HNO_3$ solution and dull in the $0.5\%\;H_2SO_4$ solution.

  • PDF

The Study on the Effect of Elevator Movement on the Pressure Difference between Vestibule and Living room in High-rise Buildings (초고층 건축물에서 엘리베이터 구동이 부속실과 화재실 간 차압형성에 미치는 영향연구)

  • Park, Younggi;Hong, Kibea;Ryou, Hong Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.85-91
    • /
    • 2018
  • Recently, there have been a lot of casualties due to fires in high-rise buildings. The toxic gases and smokes generated by fires in high-rise buildings spread rapidly through the elevator shaft and stairwell, due to the stack effect, and can cause critical casualties. To reduce the number of casualties, smoke control systems have been introduced. Smoke control systems play an essential role in preventing the spread of smoke in high-rise buildings and securing the evacuation route. Also, in high-rise buildings, evacuation by an elevator is considered to be indispensable. However, the pressure field in the shaft is strongly disturbed when the elevator is moving and this can affect the performance of the smoke control system. Therefore, in this study, we experimentally and numerically analyzed the effect of elevator movement on the pressure difference between the vestibule and living room by building a model using the sandwich pressurization method based on the performance based design. To consider the leakage areas in high-rise buildings, e.g. the windows, fire door and elevator, the National Fire Safety Codes and area ratio were used. The elevator speed in the model building was varied between 20 m/s and 100 m/s corresponding to a real elevator speed of 7 m/s~17 m/s. As a result, the relationship between the pressure difference and elevator speed was found to be ${\Delta}P=40{\cdot}{\exp}$(-Ves /-104.7)-23.735. This result can be used to take into consideration the effect of elevator movement when designing smoke control systems.

The Relationship between Damage Pattern and Structural Performance for 7-Wire Strand of Stay Cables (사장교 케이블용 7연선 손상 패턴과 구조성능 수준과의 관계 분석)

  • Seo, Dong-Woo;Na, Wongi;Kim, Byung-Chul;Park, Ki-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.810-816
    • /
    • 2017
  • This study investigates the relationship between the damage patterns and structural performance levels of a multi-strand 7-wire strand that is used as an important member of stay cables. Stay cables are continuously damaged after completion, and corrosion is the main cause. However, it is difficult to check the damage pattern inside the cable due to its structural characteristics, and it is difficult to evaluate the degradation level of the damage quantitatively. This study derives the relationship between the damage pattern and the performance level of the stranded wire by comparing results and analyzing them through an indoor experiment and finite element analysis. In order to simulate the damage of a 7-wire strand, artificial damage was applied by mechanical precision machining to perform a performance evaluation. The results of the analysis show that regardless of the damage size of the strand, the structural performance deteriorated immediately after the damage. It was experimentally and analytically deduced that the type and amount of damage should be considered as a parameter for evaluating the performance level of the strand. This information can be used for the safety management of a cable stayed bridge by constructing a database according to the pattern and amount of damage.

A Consciousness Survey on Natural Disasters of Inhabitants living in Islands of Korean Southeastern Sea (동남해안 도서 주민의 자연재해에 관한 의식 조사)

  • Hwang, Kwang-Il
    • Journal of Navigation and Port Research
    • /
    • v.36 no.6
    • /
    • pp.443-448
    • /
    • 2012
  • As a basic data to build a countermeasures against coastal disaster, the conscious survey of people living around the coastal are is needed. This study performed the conscious survey on 5 islands located at Korean southeast ocean including Youngdo of Busan. Among many respondents, 503 effective answers are got and followings are the analyzed results. Among the various kinds of disasters, especially the typhoon(28%), storm surge(19%), earthquake(15%) are selected as menacing disasters in mind to coastal inhabitants. Typhoon(60%) and storm surge(21%) were the representative disasters that the coastal inhabitants experienced. 67% among the respondents get the disaster-related information from TV and/or commercial medias, and other 21% depend on their own experiences. Although 33% of respondents attended the disaster-related training and the training time was less than 2 hours, they answered the training was very helpful. Over 85% among the respondents answered they will evacuate if a disaster occur, but only 19% know the evacuee shelter(s). Except the foods, various living goods are selected and willing to carry with for living at shelter if they have to evacuate.

Coupled Finite Element Analysis of Partially Saturated Soil Slope Stability (유한요소 연계해석을 이용한 불포화 토사사면 안전성 평가)

  • Kim, Jae-Hong;Lim, Jae-Seong;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.35-45
    • /
    • 2014
  • Limit equilibrium methods of slope stability analysis have been widely adopted mainly due to their simplicity and applicability. However, the conventional methods may not give reliable and convincing results for various geological conditions such as nonhomogeneous and anisotropic soils. Also, they do not take into account soil slope history nor the initial state of stress, for example excavation or fill placement. In contrast to the limit equilibrium analysis, the analysis of deformation and stress distribution by finite element method can deal with the complex loading sequence and the growth of inelastic zone with time. This paper proposes a technique to determine the critical slip surface as well as to calculate the factor of safety for shallow failure on partially saturated soil slope. Based on the effective stress field in finite element analysis, all stresses are estimated at each Gaussian point of elements. The search strategy for a noncircular critical slip surface along weak points is appropriate for rainfall-induced shallow slope failure. The change of unit weight by seepage force has an effect on the horizontal and vertical displacements on the soil slope. The Drucker-Prager failure criterion was adopted for stress-strain relation to calculate coupling hydraulic and mechanical behavior of the partially saturated soil slope.

The Experimental Study on the Bond behavior of High strength concrete (고강도 콘크리트의 부착거동에 관한 실험적 연구)

  • Lee, Joon-Gu;Kim, Woo;Park, Kwang-Su;Kim, Dae-Joung;Lee, Wong-Chan;Kim, Han-Joung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.774-780
    • /
    • 1999
  • The study of bond behavior between concrete and rebar has been performed for a long time. On this study, we tried to analysed variation of bond behaviors quantitatively with varying the strength of concrete. Bond stress which observed below the neutral surface of beam and at connecting part of beam and column is affected by various bond parameters. Resistance of deformed bars which embedded in concrete to the pullout force is divided 1) chemical adhesive force 2) frictional force 3) mechanical resistance of ribs to the concrete and these horizontal components of resistance is being bond strength. We selected the most common and typical variable which is concrete strength among various variables. So we used two kinds of concrete strength like as 25MPa(NSC) and 65MPa(HSC). Tension Test was performed to verify how bond behavior varied with two kinds of concrete strength. Concentration of bond stress was observed at load-end commonly in Tension Test of the initial load stage. At this stage stress distribution was almost coincident at each strength. As tension load added, this stress distribution had difference gradually and movement of pick point of bond stress to free-end and central section was observed. This tendency was observed at first and moving speed was more fast in NSC. At the preceeding result the reason of this phenomenon is considered to discretion of chemical adhesion and local failure of concrete around rebar in load-end direction. Especially, when concrete strength was increased 2.6 times in tension test, ultimate bond strength was increased 1.45 times. In most recent used building codes, bond strength is proportioned to sqare root of concrete compressive strength but comparison of normalized ultimate bond strength was considered that the higher concrete strength is, the lower safety factor of bond strength is in each strength if we use existing building codes. In Tension Test, in case of initial tensile force state, steel tensile stress of central cross section is not different greatly at each strength but tensile force increasing, that of central cross section in NSC was increased remarkably. Namely, tensile force which was shared in concrete in HSC was far greater than that of concrete in NSC at central section.

  • PDF

The Quality Properties of Self-Compacting Concrete Mixed with Tailing from the Sangdong Tungsten Mine (상동광산 광미를 혼합한 자기충전 콘크리트의 품질 특성)

  • Choi, Yun-Wang;Kim, Yong-Jic;Choi, Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.777-783
    • /
    • 2006
  • This study has focused on the possibility for recycling of tailings from the Sangdong tungsten mine as powder(TA) of self-compacting concrete(SCC). The experimental tests for slump-flow, time required to reach 500 mm of slump flow(sec), time required to flow through V-funnel(sec) and filling height of U-box test(mm) were carried out in accordance with the specified by the Japanese Society of Civil Engineering(JSCE). The results of this study, slump-flow of SCC was satisfied a prescribed range. And time required to reach 500 mm of slump flow(sec) and time required to flow through V-funnel(sec) decreased with increasing replacement of TA. But filling height of U-box test(mm), replacement of TA up to 30% were satisfied a prescribed range. The mechanical properties including compressive strength, splitting tensile strength and elastic modulus were checked with the requirements specified by Korean Industrial Standards(KS). The compressive strength of SCC decreased with increasing replacement of TA, splitting tensile strength and elastic modulus were similar to those of normal concrete. The fundamental durability was reviewed through the dry shrinkage rate and accelerated carbonation tests. As the result dry shrinkage rate and accelerated carbonation depth increased with increasing replacement of TA.

A Experimental Study on the Determination of Construction method of Controled Low-strength Material Accelerated Flow Ability Using Surplus Soil for Underground Power Line (지중송전관로용 급결 유동성 뒤채움재의 시공법 설정에 관한 실험적 연구)

  • Oh, Gi-Dae;Kim, Dae Hong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.84-93
    • /
    • 2010
  • Compaction of backfill material of Underground power lines is difficult, especially under pipeline. so it could cause structural problem because of low compaction efficiency. So various methods have been taken to solve the problem and one of them is CLSM(Controled low-strength material accelerated flow ability). But In other countries, these are already in progress for a long time to research and development and recently on practical steps. But, in our country, study for only general structures, not for underground power line structure that is being constructed at night rapidly. In this study, we performed property tests and indoor & outdoor test (3 cases). The tests showed flow ability reached at the limit construction(160 mm) flowability by 9 to 15 minute after starting to mix, and construction buoyant is lowering after placing CLSM by 70 % of theoretical buoyant that is calculated by unit weight of material. In this paper, we performed indoor tests and outdoor tests to estimate mechanical properties and to suggest construction method(using batch plant, setting spacer at 1.8 m and placing at 2m) for CLSM that using surplus soil. And the test showed good results for construction quality, workability and structure safety.

  • PDF

Morphology and Mechanical Properties through Hydroxyapatite Powder Surface Composite (Hydroxyapatite의 파우더 표면 복합화를 통한 형태 및 기계적 성질에 관한 연구)

  • Kye, Sung Bong;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.299-306
    • /
    • 2016
  • In this study, new hydroxyapatite powder surface composites were investigated for protective effects against ultraviolet rays. Hydroxyapatite (HAp) is biocompatible and does not cause nebula phenomenon on skin. We investigated the surface modification of hydroxyapatite to improve UV block and skin usage. Dimethicone, lauroyl lysine, triethoxycaprylylsilane and silica were used as coating agents for the surface modification of HAp. To prepare the composite complex of the modified surface, the dimethicone, lauroyl lysine and triethoxycaprylylsilane were prepared by a dry process, and silica by a hydrothermal synthesis method. The HAp-silica was chosen as the best composite powder when measuring its sun protection levels. We investigated the characteristics of the surface of HAp-silica by SEM, particle size analyzer and energy dispersive spectrometry (EDS). Additionally, the stability in the formulation, UV block effect, and safety in BB creams were investigated. In conclusion, HAp-silica prepared by the modification of HAp complex surface improved the skin usage and UV block effect by enhancing the white cloudy phenomenon. These results indicate that HAp-silica may be used for UV block cosmetics.