• Title/Summary/Keyword: Mechanical parameter identification

Search Result 114, Processing Time 0.022 seconds

Parameter Identification Using Static Compliance Dominant Frequencies (정유연성 지배주파수를 이용한 매개변수 인식기법)

  • Nam, Dong-Ho;Choi, Sang-Hyun;Park, Soo-Yong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.71-78
    • /
    • 2005
  • This paper presents an improved system identification methodology for structural systems by applying static compliance dominant (SCD) frequencies. The existing sensitivity-based system identification technique is extended to adopt the static compliance dominant frequencies, and the performance of the additional spectral information, i.e., SCD frequencies, is compared with that of the natural frequencies only via a numerical example of a mechanical system. The results of the numerical study indicate that the additional use of the SCD frequencies improves accuracy in system identification problems.

Identification and Optimization of Dominant Process Parameters Affecting Mechanical Properties of FDM 3D Printed Parts (압출적층조형 공정 기반 3D 프린팅 제품 기계적 특성의 지배적 공정인자 도출 및 최적화에 관한 연구)

  • Kim, Jung Sub;Jo, Nanhyeon;Nam, Jung Soo;Lee, Sang Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.607-612
    • /
    • 2017
  • Recently, additive manufacturing (AM) technology, also known as 3D printing technology, has attracted attention as an innovative production method to fabricate functional components having complex shapes with saving materials. In particular, a fabrication of poly lactic acid (PLA) parts through a fused deposition modeling (FDM) technique has attracted much attention in the medical field. In this paper, an experimental study on the identification of dominant process parameters influencing mechanical properties of PLA parts fabricated by the FDM process is conducted, and their optimal values for maximizing the mechanical properties are obtained. Three process parameters are considered in this research, namely, layer thickness, a part orientation and in-fill. It is known that thin layer thickness, part orientation diagonal to the tension direction, and full in-fill are optimal conditions to maximize the mechanical properties.

A Position Control of EHA Systems using Adaptive PID Sliding Mode Control Scheme (적응PID 슬라이딩 모드 제어기법을 적용한 EHA 시스템의 위치제어)

  • Lee, Ji-Min;Park, Sung-Hwan;Park, Min-Gyu;Kim, Jong-Shik
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.120-130
    • /
    • 2013
  • An adaptive PID sliding mode controller is proposed for the position control of electro-hydrostatic actuator(EHA) systems with system uncertainties and saturation in the motor. An EHA prototype is developed and system modeling and parameter identification are executed. Then, adaptive PID sliding mode controller and optimal anti-windup PID controller are designed and the performance and robustness of the two control systems are compared by experiment. It was found that the adaptive PID sliding mode control system has better performance and is more robust to system uncertainties than the optimal anti-windup PID control system.

A novel adaptive unscented Kalman Filter with forgetting factor for the identification of the time-variant structural parameters

  • Yanzhe Zhang ;Yong Ding ;Jianqing Bu;Lina Guo
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.9-21
    • /
    • 2023
  • The parameters of civil engineering structures have time-variant characteristics during their service. When extremely large external excitations, such as earthquake excitation to buildings or overweight vehicles to bridges, apply to structures, sudden or gradual damage may be caused. It is crucially necessary to detect the occurrence time and severity of the damage. The unscented Kalman filter (UKF), as one efficient estimator, is usually used to conduct the recursive identification of parameters. However, the conventional UKF algorithm has a weak tracking ability for time-variant structural parameters. To improve the identification ability of time-variant parameters, an adaptive UKF with forgetting factor (AUKF-FF) algorithm, in which the state covariance, innovation covariance and cross covariance are updated simultaneously with the help of the forgetting factor, is proposed. To verify the effectiveness of the method, this paper conducted two case studies as follows: the identification of time-variant parameters of a simply supported bridge when the vehicle passing, and the model updating of a six-story concrete frame structure with field test during the Yangbi earthquake excitation in Yunnan Province, China. The comparison results of the numerical studies show that the proposed method is superior to the conventional UKF algorithm for the time-variant parameter identification in convergence speed, accuracy and adaptability to the sampling frequency. The field test studies demonstrate that the proposed method can provide suggestions for solving practical problems.

Study on Robust Control for Proportional Pressure Control Valve with MRC (MRC를 이용한 비례압력제어밸브의 강인한 제어에 관한 연구)

  • Yun, So-Nam;Jeong, Hwang-Hun;Lee, Ill-Young
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.77-84
    • /
    • 2013
  • The proportional pressure control valve that was used to relief valve has different dynamic characteristics on each case. Because this valve has different assembling or processing error and environmental condition. However, a customer who used the relief valve wants to have a steadily performance even if the dynamic characteristics of valve was changed. For this reason, the manufacturer try to make the robust controller that has simple structure. This paper concerns about the design of robust controller that didn't affected by plant parameter's changing. The control strategy is a model reference control that conducted by on line identification problem, gradient method and Lyapunov equation. This adaptvie control law's validity that this paper deal with was confirmed by an results of step response test or hysteresis test.

Identification of Structural Parameters from Frequency Response Functions (주파수 응답함수를 이용한 구조 파라메터 예측)

  • Kim, Kyu-Sik;Kang, Yeon-June
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.863-869
    • /
    • 2007
  • An improved method based on a normal frequency response function (FRF) is proposed to identify structural parameters such as mass, stiffness and damping matrices directly from the FRFs of a linear mechanical system. The method for estimating structural parameters directly from the measured FRFs of a structure is presented. This paper demonstrates that the characteristic matrices are extracted more accurately by using a weighted equation and eliminating the matrix inverse operation. The method is verified for a four degree-of-freedom lumped parameter system and an eight degree-of-freedom finite element beam. Experimental verification is also performed for a free-free steel beam whose size and physical properties are the same as those of the finite element beam. The results show that the structural parameters, especially the damping matrix, can be estimated more accurately by the proposed method.

  • PDF

Material Parameters Identification of Adhesive in Layered Plates Using Moiré Interferomety and Optimization Technique (무아레 간섭계 측정과 최적화 기법을 이용한 적층판의 접착제 물성치 규명)

  • Joo, Jin-Won;Kim, Han-Jun;Lee, Woo-Hyuk;Kim, Jin-Young;Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.11
    • /
    • pp.1100-1107
    • /
    • 2007
  • In this study, a method to characterize material properties of adhesive that is used in a layered plates bonding process is developed by combined evaluation of experiment, simulation and optimization technique. A small bonded specimens of rectangular plate are prepared to this end, and put into a thermal loading conditions. $Moir{\acute{e}}$ interferomety is used to measure submicron displacements occurred during the process. The elevated temperature is chosen as control factors. FE analysis with constant values for the adhesive materials is also carried out to simulate the experiment. Significant differences are observed from the two results, in which the simulation predicts the monotonic increase of the bending displacement whereas the measurement shows decrease of the displacement at above $75^{\circ}C$. In order to minimize the difference of the two, material parameters of the adhesive at a number of different temperatures are posed as unknowns to be determined, and optimization is conducted. As a result, optimum material parameters are found that excellently matches the simulation and experiment, which are decreased with respect to the temperature.

Model Validation for the CBS Ku-Band Transponder Panel Using Launch Environmental Test (발사환경시험을 이용한 통신방송위성 Ku대역 중계기 패널의 모델 검증)

  • Seo Hyun Suk;Choi Jang Sub;Park Jong Heung;Woo Hyung Je
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.387-394
    • /
    • 2005
  • Accurate predictions and simulations of the behavior of space structures based on analytical models become more important. In order to perform analysis to support the design of Ku-band transponder panel for the Communications and Broadcasting Satellite(CBS), mathematical models of the panel were generated in the form of finite element models. Test verification of these models is required before the transponder panel can be certified for launch environments. A modal identification was performed to obtain modal parameters which can be compared with the test results using correlation techniques. This paper approaches the sensor placement from the standpoint of the structural dynamicist who uses the modal parameter obtained during launch environmental test. The models were validated by performing a test-analysis correlation and updating analysis. It was proved that the Ku-band transponder panel satisfies the environmental test requirements.

Modal Testing of Mechanical Structures Subject to Operational Excitation Forces

  • Gade, Svend;Moller, Nis B.;Herlufsen, Henrik;Brincker, Rune;Andersen, Palle
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1162-1165
    • /
    • 2001
  • Operational Modal Analysis also known as Output Only Modal Analysis has in the recent years been used for extracting modal parameters of civil engineering structures and is now becoming popular for mechanical structures. The advantage of the method is that no artificial excitation need to be applied to the structure or force signals to be measured. All the parameter estimation is based upon the response signals, thereby minimising the work of preparation for the test. This test case is a controlled lab set-up enabling different parameter estimation methods techniques to be used and compared to the Operational Modal Analysis. For Operational Modal Analysis two different estimation techniques are used: a non-parametric technique based on Frequency Domain Decomposition (FDD), and a parametric technique working on the raw data in time domain, a data driven Stochastic Subspace Identification (SS!) algorithm. These are compared to other methods such as traditional Modal Analysis.

  • PDF

Crack identification based on synthetic artificial intelligent technique (통합적 인공지능 기법을 이용한 결함인식)

  • Shim, Mun-Bo;Suh, Myung-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.182-188
    • /
    • 2001
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.

  • PDF