• Title/Summary/Keyword: Mechanical joint

Search Result 2,039, Processing Time 0.029 seconds

The Occurrence of Degenerative Change in the Mandibular Condyles of Korean Patients with Temporomandibular Disorders (측두하악장애 환자에서 하악과두의 퇴행성 변화의 발생 양상에 대한 연구)

  • Jo, Jung-Hwan;Park, Min-Woo;Kim, Young-Ku;Lee, Jeong-Yun
    • Journal of Oral Medicine and Pain
    • /
    • v.36 no.1
    • /
    • pp.53-63
    • /
    • 2011
  • Osteoarthritis (OA), the most common form of arthritis, is a result of both mechanical and biological events that destabilize the normal coupling of degradation and synthesis of articular cartilage chondrocytes and extracelluar matrix, and subchondral bone. Although it is likely that the molecular basis of pathogenesis is similar to that of other joints, additional study of the temporomandibular joint (TMJ) is required due to its unique structure and function. This study was carried out to evaluate the epidemiologic characteristics of TMJ osteoarthritis. The purpose of this study was to investigate the prevalence of TMJ OA in Patients with temporomandibular disorders (1405 men and 2922 women whose mean age was $30.2\; {\pm}\; 15.4$ and $33.1\;{\pm}\;15.2$ years, respectively) who had visited the TMJ and Orofacial Pain Clinic of Seoul National University Dental Hospital in 2007. Orthopantomograms, TMJ tomograms and transcranial radiographs were used to evaluate degenerative change of the mandibular condyle. The obtained results were as follows: 1. Degenerative change of the mandibular condyle was observed in 883 (20.4%) of 4327 subjects. The prevalence was significantly higher in women (706 patients, 24.1%) than in men (177 patients, 12.6%), and this significant difference between genders was observed in all age groups. 2. The prevalence of degenerative change of the mandibular condyle in TMD patients showed a gentle increase along with age. Such increase was statistically significant in women (P < 0.001), but not in men. 3. Sclerosis was observed the most frequently in all age groups and the mean age of the patients with osteophyte was the highest among four types of degenerative change. 4. Although men showed degenerative change in the left side more often and women showed degenerative change more frequently in both sides, the difference of distribution in sides between genders was not significant. In conclusion, the prevalence of degenerative change of the mandibular condyle in TMD patients is higher in women than in men, and increases steadily with aging, but not as dramatically as in other joints that show a steep increase in prevalence around the age of 45 years. It can be suggested that the epidemiologic characteristic of OA of the TMJ differs from those of other joints, and that a more extensive study based on the general population is necessary.

An Experimental and Analytical Studies on the Mechanical Behavior of High Tension Bolted Joints with Oversize Hole (과대공을 갖는 고장력 볼트 이음부의 역학적 거동에 관한 실험 및 해석적 연구)

  • Lee, Seung Yong;Park, Young Hoon;Cho, Sun Kyu;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.355-367
    • /
    • 1998
  • To evaluate the mechanical behavior and the compressive stress distribution in high tension bolted joints according to the size of bolt hole, the experimental and analytical studies are performed with enlarging bolt hole size. In experimental study, the static test is performed to measure the slip coefficient, and the fatigue test is also performed to evaluate the fatigue strength and failure pattern of fatigue crack. In analytical study, the compressive stress distribution is investigated by using the finite element analysis. From the result of experimental study, the slip coefficient and fatigue strength of the high tension bolted joints with oversize hole are not much different but somewhat it has decreased. These are because the size of bolt hole is larger than the holes of nominal size, therefore the width of clamping force is decreased and the compressive stress distribution area is smaller, this is certificated in the finite element analysis. In addition, the origin of fatigue crack in the oversize holes is closer to the hole than in the holes of nominal size, consequently it is investigated that the origin of fatigue crack is intimately associated with the compressive stress distribution which is formulated by the clamping force in both base metal and splice plate.

  • PDF

Improvement of Mechanical and Corrosion Properties of Mg-Ca-Zn Alloy by Grain Refinement (Grain Refinement를 통한 Mg-Ca-Zn합금의 기계적 특성 및 부식 특성 향상)

  • Kim, Dae-Han;Choi, Jong-Min;Lim, Hyun-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.418-424
    • /
    • 2017
  • Magnesium has a higher specific strength than other metals and is widely used industry wide due to its excellent vibration absorption ability and electromagnetic wave shielding property.For example, it is used for automobile parts such as car seat frames and cylinder heads, and is widely used in electronic products such as notebook cases and mobile phone cases. In addition, it is in the spotlight as a bone-implant material used to assist in the treatment of damaged bones when the bones are cracked or broken. Currently, Ti alloy, stainless steel and Co-Cr-Mo alloy are used as the implant material, and the Mg alloy remains in research stage. The current problem with bone implant implants is that the patients must undergo reoperation to remove the implants after joint surgery. Magnesium, however, can achieve sufficient strength compared to current materials. In addition, since it is self-decomposed after the recovery, reoperation is not necessary. In this paper, Mg alloys were designed by adding harmless Ca and Zn to the human body. In order to improve the strength and corrosion resistance, the final alloy was designed by adding a small amount of Sr as a grain refiner. The radioactive elements of Sr are harmful to the human body, but other naturally occurring Sr elements are harmless. Microstructure analysis of the alloys was performed by optical microscopy and scanning electron microscopy. The mechanical properties and corrosion characteristics were evaluated by tensile test, potentiodynamic test and immersion test.

Mechanical Reliability Evaluation on Solder Joint of CCB for Compact Advanced Satellite (Sherlock을 활용한 차세대 중형위성용 CCB 솔더 접합부의 기계적 신뢰성 평가)

  • Jeon, Young-Hyeon;Kim, Hyun-Soo;Lim, In-Ok;Kim, Youngsun;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.498-507
    • /
    • 2017
  • Electronic equipments comprised of high density components with various packaging types have been recently applied to a satellite. Therefore, to guarantee high reliability of electrical equipment, a design approach, which can reduce the development period and cost through an early diagnosis in potential risks of failure, should be established. In the previous research, the reliability assesment of the electronic equipments have based on Steinberg's fatigue failure theory. However, this theory was not enough for further investigation of life prediction and reliability of the electronic equipments comprised of various sizes and packaging types due to its theoretical limitations and analysis results sensitivity with regard to different modeling technic. In that case, if detailed finite element model is established, aforementioned problems can be readily solved. However, this approach might arise disadvantage of spending much time. In this paper, to establish strategy for high reliability design of electronic equipment, we performed mechanical reliability evaluation of CCB (Camera Controller Box) at qualification level based on the approach using Sherlock unlike design techniques applied to existing business.

Mechanical Properties of Precious Metal-Ceramic Alloy Joined by the Laser-Welding and the Soldering Method (레이저 용접과 납착법으로 연결된 귀금속성 금속-도재 합금의 물리적 성질)

  • Oh, Jung-Ran;Lee, Seok-Hyung;Woo, Yi-Hyung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.4
    • /
    • pp.269-279
    • /
    • 2003
  • This study investigated the mechanical properties of precious metal-ceramic alloy joined by the laser-welding and the soldering compared with the parent metal. Twenty-four tensile specimens were cast in precious metal-ceramic alloy and divided into three groups of eight. All specimens in the control group(group 1) were left in the as-cast condition. Group 2 and 3 were the test specimens, which were sectioned at the center. Eight of sectioned specimens were joined by soldering with a propane-oxygen torch, and the remaining specimens were joined by laser-welding. After joining, each joint diameter was measured, and then tested to tensile failure on an Instron machine. Failure loads were recorded, and then fracture stress(ultimate tensile strength), 0.2% yield strength and % elongation calculated. These data for three groups were subjected to a one-way analysis of variance(ANOVA). Neuman-Keuls post hoc test was then used to determine any significant differences between groups. The fracture locations, fracture surfaces were examined by SEM(scanning electron microscope). The results were as follows: 1) The tensile strength and 0.2% yield strength of the soldered group($280.28{\pm}49.35MPa$, $160.24{\pm}26.67MPa$) were significantly less than both the as-cast group($410.99{\pm}13.07MPa$, $217.82{\pm}17.99MPa$) and the laser-welded group($383.56{\pm}59.08MPa$, $217.18{\pm}12.96MPa$). 2) The tensile strength and 0.2% yield strength of the laser-welded group were about each 98%, 99.7% of the as-cast group. There were no statistically significant differences in these two groups(p<0.05). 3) The percentage elongations of the soldered group($3.94{\pm}2.32%$) and the laser-welded group($5.06{\pm}1.08%$) were significantly less than the as-cast group($14.25{\pm}4.05%$) (p<0.05). 4) The fracture of the soldered specimens occurred in the solder material and many porosities were showed at the fracture site. 5) The fracture of the laser-welded specimens occurred also in the welding area, and lack of fusion and a large void was observed at the center of the fracture surface. However, the laser-welded specimens showed a ductile failure mode like the as- cast specimens. The results of this study indicated that the tensile strengths of the laser-welded joints were comparable to those of the as-cast joints and superior to those of the soldered joints.

Comparative analysis on mechanical properties of gold and Co-Cr dental alloys due to joining methods (이종금속간의 결합방법에 따른 결합강도에 관한 비교 연구)

  • Park, Seong-Kyu;Choi, Boo-Byung;Kwon, Kung-Rock
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.2
    • /
    • pp.75-86
    • /
    • 2003
  • The purpose of this study was to evaluate their mechanical properties after laser-welding or soldering of precious and non-precious dental alloys. For this study, 30 Co-Cr alloy specimens, 15 gold alloy specimens, 15 palladium alloy specimens were casted and seperated on the middle area. 15 sperated Co-Cr specimens and 15 seperated gold alloy specimens were laser welded (GW Group). 15 sperated Co-Cr specimens and 15 sperated gold alloy specimens were soldered by coventional soldering method (GS Group). 15 sperated Co-Cr specimens and 15 seperated palladium alloy specimens were laser welded (PW Group). 15 sperated Co-Cr specimens and 15 sperated palladium alloy specimens were soldered by coventional soldering method (PS Group). Tensile strength, 0.2% yield strength, % elongation were recorded in nine specimens of each group. Bending strength were record in six specimens of each group. These data for four groups were subjected to a two-way analysis of variance(ANOVA). The fracture locations, fractured surfaces were examined by SEM(scanning electron microscope). The results were as following: 1) In the same alloy combination, the tensile strength and 0.2% yield strength and of the laser welded group with same metal combination were significantly less than soldered groups(p<0.05). 2) In the combination of Co-Cr/Palladium, the bending strength of laser welded group were significantly less than that of soldered groups(p<0.05). In the combination of Co-Cr/Gold, the bending strength of laser welded group were significantly higher than that of soldered groups(p<0.05). 3) In the same method of joint, the tensile strength and 0.2% yield strength and bending strength of the Co-Cr/gold were significantly higher than Co-Cr/palladium(p<0.05). 4) There was no significantly statistical difference between each group in the % elongation(p>0.05). 5) The fracture of the laser welded specimens occured in the welding area and a large void was observed at the center of the fracture surface. 6) The fracture of the soldered specimens occured also inthe soldered area and many porpsities were showed at the fracture sites.

An Experimental Study on the Failure of a Novel Composite Sandwich Structure (새로운 형상의 복합재 샌드위치 체결부 구조의 파손거동 연구)

  • Kwak, Byeong-Su;Kim, Hong-Il;Dong, Seung-Jin;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.209-215
    • /
    • 2016
  • The failure of composite sandwich structures with thickness and material variation was studied. The main body of the structure is sandwich plate made of the carbon composite face and Aluminum honeycomb core. It is connected with composite laminated flange without core through transition region of tapered sandwich panel with foam core. Tension and compression tests were conducted for the total of 6 panels, 3 for each. Test results showed that the panels under compression are vulnerable to the face failure along the material discontinuity line between two different cores. However the failure load of which panel does not show such failure can carry 16% more load and fails in honeycomb core and face debonding. For the tensile load, the extensive delamination failure was observed at the corner radius which connects the panel and the flange. The average failure load for compression is about 7 times the tensile failure load. Accordingly, these sandwich structures should be applied to the components that endure the compressive loadings.

Acceleration Test Method for Failure Prediction of the End Cap Contact Region of Sodium Cooled Fast Reactor Fuel Rod (소듐냉각 고속로 연료봉단의 접촉부 손상예측을 위한 가속시험 방법)

  • Kim, Hyung-Kyu;Lee, Young-Ho;Lee, Hyun-Seung;Lee, Kang-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.375-380
    • /
    • 2017
  • This paper reports the results of an acceleration test to predict the contact-induced failure that could occur at the cylinder-to-hole joint for the fuel rod of a sodium-cooled fast reactor (SFR). To incorporate the fuel life of the SFR currently under development at KAERI (around 35,000 h), the acceleration test method of reliability engineering was adopted in this work. A finite element method was used to evaluate the flow-induced vibration frequency and amplitude for the test parameter values. Five specimens were tested. The failure criterion during the life of the SFR fuel was applied. The S-N curve of the HT-9, the material of concern, was used to obtain the acceleration factor. As a result, a test time of 16.5 h was obtained for each specimen. It was concluded that the $B_{0.004}$ life would be guaranteed for the SFR fuel rods with 99% confidence if no failure was observed at any of the contact surfaces of the five specimens.

Mechanical reliability of Sn-37Pb BGA solder joints with high-speed shear test (고속전단 시험을 이용한 Sn-37Pb BGA solder joints의 기계적 신뢰성 특성 평가)

  • Jang, Jin-Kyu;Ha, Sang-Su;Ha, Sang-Ok;Lee, Jong-Gun;Moon, Jung-Tak;Park, Jai-Hyun;Seo, Won-Chan;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.65-70
    • /
    • 2008
  • The mechanical shear strength of BGA(Ball Grid Array) solder joints under high impact loading was investigated. The Sn-37Pb solder balls with a diameter of $500{\mu}m$ were placed on the pads of FR-4 substrates with ENIG(Electroless Nickel Immersion Gold) surface treatment and reflowed. For the High Temperature Storage(HTS) test, the samples were aged a constant testing temperature of $120^{\circ}C$ for up to 250h. After the HTS test, high speed shear tests with various shear speed of 0.01, 0.1, 1, 3 m/s were conducted. $Ni_3Sn_4$ intermetallic compound(IMC) layer was observed at the solder/Ni-P interface and thickness of IMC was increased with aging process. The shear strength increased with increasing shear speed. The fracture surfaces of solder joints showed various fracture modes dependent on shear speed and aging time. Fracture mode was changed from ductile fracture to brittle fracture with increasing shear speed.

  • PDF

A Study on The Characteristics of Solar Cell by Thermal Shock test (열충격 시험을 통한 태양전지 특성에 관한 연구)

  • Kang, Min-Soo;Jeon, Yu-Jae;Shin, Young-Eui
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.249-253
    • /
    • 2012
  • In this study, The report analysed the characteristics of power drop in solar cell through thermal shock test. The solar cells were tested 500 cycles in $-40^{\circ}C$ lowest temperature and $120^{\circ}C$ highest temperature by thermal shock test on ironbound conditions, that excerpted standard of PV Module(KS C IEC-61215). The result of the efficiency analysis through measure of I-V, efficiency of Cell decreased from 13.9% to 11.0% and decreasing rate was 20.9% after test. The result of the surface analysis through EL, solar cell has damage of gridfinger and ribbon joint. Cell cracks were founded in damage of cells through cross section of solar cells. Also, Fill factors were decreased from 72.3% to 62.0% after thermal shock test and decreasing rate is 11.8%. therefore, Yearly power drop is aggravated with facts that cell crack, damage of surface and power loss of cell by change of I-V characteristic curve with decreasing of parallel resistance.