• Title/Summary/Keyword: Mechanical feed back

Search Result 51, Processing Time 0.026 seconds

An Experimental Study on Water-Hammer Effect for Spacecraft Propulsion System (인공위성 추진계통 관로내의 수격효과에 관한 실험적 연구)

  • Kwon, Ki-Chul;Lee, Eun-Sang;Park, Sang-Min;Kang, Shin-Jae;Rho, Byung-Joon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.288-293
    • /
    • 2001
  • This paper presents the water-hammer effect due to the rapid opening and closing of isolation valve and thruster valve in the spacecraft propulsion system. The single propellant feed system was modeled to investigate the maximum peak pressure due to the water-hammer effect. The test parameters are tank supply pressure, shape and throat length of orifice and line length. Kerosene was used as the inert simulant propellant liquid instead of hydrazine. As downstream line length after isolation valve increased from 1.5 to 2.5m, the maximum line-filling water-hammer peak pressure decreased, but the average time interval between peak pressures increased. The maximum line-filling water-hammer peak pressure with orifice was lower than without orifice, and the maximum line-filling water-hammer peak pressure with orifice at the back of isolation valve was lower than with orifice in front of isolation valve. Without orifice, the maximum water-hammer peak pressure due to the rapid opening and closing of the thruster valve was about 126% of tank supply pressure. With orifice, it decreased. As orifice throat length increased, it decreased. The maximum water-hammer peak pressure due to the rapid closing of the thruster valve with converging-diverging orifice was lower than normal orifice. It was found that the orifice as a means of pressure drop was very effective to reduce the water hammer peak pressure at the thruster valve. The results of this study can be used for the design of spacecraft liquid propulsion feed system.

  • PDF

Analysis of the Chip Shape in Turing (I) -Analysis of the Chip Flow Angle- (선삭가공의 칩형상 해석 (I) -칩흐름각 해석-)

  • 이영문;최수준;우덕진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.139-144
    • /
    • 1991
  • Chip flow angle is one of the important factors to be determined for the scheme of Chip Control. Up to now, however, a dependable way to predict the chip flow angle in practical cutting has not been established satisfactorily. In this paper a rather simple theoretical prediction of chip flow angle is tried based on some already widely confirmed hypotheses. The developed equation of chip flow angle contains the parameters of depth of cut d, feed rate f, nose radius $r_{n}$ side cutting edge angle $C_{s}$, side rake angle .alpha.$_{s}$ and back rake angle .alpha.$_{b}$. Theoretical results of chip flow angle given by this study bas been shown in a good agreement with experimental ones.s.s.s.s.

Development of Precision Inspection Technique for Aircraft Parts Having Very Thin Features on CAD/CAI Integration (CAD/CAI 통합에 기초한 박형 단면을 가지는 항공기 터빈블레이드의 정밀측정기술 개발)

  • Park, Hui-Jae;An, U-Jeong;Kim, Wang-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1743-1752
    • /
    • 1996
  • In this paper, a precision inspection technique using CAD/CAI integration is proposed for the parts having very thin and sharp 3 dimensional curve features. The technique begings with feature reconstruction of turbine blades which have 3 dimensional combined feometry, such as splines, and thin circles. The alifnment procedures consistsb of two phases-rough and fine phases : rough phase alignment is based on the conventional 6 point5s probing on the clear cut surfacef, and fine phase alignment is based on the intial measurement on the 3 dimensional curved parts using an lterative measurement feed-back least sequares technique for alignment. Forf the analysis of profile tolerance of parts, the actual measured points are obtained by finding the closet points on the CAD geometry by the developed subdivision technique and the Tschebycheff norm is applied based on iterative fashion, giving accurate profile tolerance value. The developed inspection technique is applied to practical procedures of blade manufacturing and demonstrated high performance.

Development of Clamping Force Estimation Algorithm and Clamp-force Sensor Calibration on Electromechanical Brake Systems (전동식 브레이크 시스템의 클램핑력 센서 교정 및 클램핑력 추정 알고리즘 개발)

  • Park, Giseo;Choi, Seibum;Hyun, Dongyoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.365-371
    • /
    • 2016
  • The electromechanical brake (EMB) is one of future brake systems due to its many advantages. For implementation of the EMB, the correct feed back about clamping force is necessary. Keeping commercialization of the EMB in mind, it is strongly demanded that an expensive load cell measuring the clamping force is replaced with an estimation algorithm. In addition, an estimation of the kissing point where the brake pads start to come into contact with a disk wheel is proposed in this paper. With these estimation algorithms, the clamping force can be expressed as a polynomial characteristic curve versus the motor angle. Also, a method for calibration of measured values by the load cell is proposed and used for an actual characteristic curve. Lastly, the performance of the proposed algorithms is evaluated in comparison with the actual curve on a developed EMB test bench.

3D Object Recognition and Accurate Pose Calculation Using a Neural Network (인공신경망을 이용한 삼차원 물체의 인식과 정확한 자세계산)

  • Park, Gang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1929-1939
    • /
    • 1999
  • This paper presents a neural network approach, which was named PRONET, to 3D object recognition and pose calculation. 3D objects are represented using a set of centroidal profile patterns that describe the boundary of the 2D views taken from evenly distributed view points. PRONET consists of the training stage and the execution stage. In the training stage, a three-layer feed-forward neural network is trained with the centroidal profile patterns using an error back-propagation method. In the execution stage, by matching a centroidal profile pattern of the given image with the best fitting centroidal profile pattern using the neural network, the identity and approximate orientation of the real object, such as a workpiece in arbitrary pose, are obtained. In the matching procedure, line-to-line correspondence between image features and 3D CAD features are also obtained. An iterative model posing method then calculates the more exact pose of the object based on initial orientation and correspondence.

Experimental calibration of forward and inverse neural networks for rotary type magnetorheological damper

  • Bhowmik, Subrata;Weber, Felix;Hogsberg, Jan
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.673-693
    • /
    • 2013
  • This paper presents a systematic design and training procedure for the feed-forward back-propagation neural network (NN) modeling of both forward and inverse behavior of a rotary magnetorheological (MR) damper based on experimental data. For the forward damper model, with damper force as output, an optimization procedure demonstrates accurate training of the NN architecture with only current and velocity as input states. For the inverse damper model, with current as output, the absolute value of velocity and force are used as input states to avoid negative current spikes when tracking a desired damper force. The forward and inverse damper models are trained and validated experimentally, combining a limited number of harmonic displacement records, and constant and half-sinusoidal current records. In general the validation shows accurate results for both forward and inverse damper models, where the observed modeling errors for the inverse model can be related to knocking effects in the measured force due to the bearing plays between hydraulic piston and MR damper rod. Finally, the validated models are used to emulate pure viscous damping. Comparison of numerical and experimental results demonstrates good agreement in the post-yield region of the MR damper, while the main error of the inverse NN occurs in the pre-yield region where the inverse NN overestimates the current to track the desired viscous force.

Practical Model for Predicting Beta Transus Temperature of Titanium Alloys

  • Reddy, N.S.;Choi, Hyun Ji;Young, Hur Bo
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.381-387
    • /
    • 2014
  • The ${\beta}$-transus temperature in titanium alloys plays an important role in the design of thermo-mechanical treatments. It primarily depends on the chemical composition of the alloy and the relationship between them is non-linear and complex. Considering these relationships is difficult using mathematical equations. A feed-forward neural-network model with a back-propagation algorithm was developed to simulate the relationship between the ${\beta}$-transus temperature of titanium alloys, and the alloying elements. The input parameters to the model consisted of the nine alloying elements (i.e., Al, Cr, Fe, Mo, Sn, Si, V, Zr, and O), whereas the model output is the ${\beta}$-transus temperature. The model developed was then used to predict the ${\beta}$-transus temperature for different elemental combinations. Sensitivity analysis was performed on a trained neural-network model to study the effect of alloying elements on the ${\beta}$-transus temperature, keeping other elements constant. Very good performance of the model was achieved with previously unseen experimental data. Some explanation of the predicted results from the metallurgical point of view is given. The graphical-user-interface developed for the model should be very useful to researchers and in industry for designing the thermo-mechanical treatment of titanium alloys.

A Finite Element Analysis of Stress on the Femoral Stem with Resorption of Proximal Medial Femur after Total Hip Replacement (대퇴골 근위부 골흡수가 인공 고관절 대퇴 stem에 미치는 응력에 관한 연구-FEM을 이용한 분석)

  • 김성곤
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.183-188
    • /
    • 1994
  • In clinical orthopaedics, bone resoption in the cortex is often seen post operatively on X-rays or bone densitometry after total hip replacement (THR) in the form of cortical osteoporosis or atropy. Stress shielding of bone occurs, when a load, normally carried by the bone alone, is shared with an implant as a result, the bone stresses are abnormal and with remodelling analysis this may cause extensive proximal bone resoption, possibly weakening the bone bed to the point of failure. The author made finite element models of the cemented and non-cemented type implanted femoral stem with bone resorption of the proximal medial femur and studied the feed back effect of the various degree of bone resoption to THR system by parametric analysis on the stress of the femoral stem and interface. The results of the present finite element analysis implied that the extent of proximal bone resorption has the effect of more increasing stress on the distal stem tip, cement mantle and interface in both type of femoral stem and this high distal stress possibly can cause the mechanical failure of loosening or failure after THR.

  • PDF

A Study on Inequality Rate of Integrated Cylinder Lubricator System with an Accumulated Distribution by the Electronic Control in a Large Two-stroke Diesel Engine (대형 2행정 디젤기관에 있어서 일체형 전자제어 축압분배 실린더 주유기 시스템의 주유 불균일률에 관한 연구)

  • Bae, Myung-Whan;Jung, Hwa;Kim, Su-Min;Bae, Chang Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.123-133
    • /
    • 2014
  • Minimizing the cylinder wear and the consumption rate of cylinder oil in a large two-stroke diesel engine is of great economic importance. A motor-driven cylinder lubricator for Sulzer RT-flex large two-stroke diesel engines developed by authors is in need of improving the lubricating system to lubricate cylinder parts optimally by an electronically controlled quill device according to changes of engine load and revolution speed. In order to apply the developed accumulating distributor to an integrated cylinder lubricator by the electronically controlled system as the third research stage, the lubricating system is improved in the electronically controlled quill device with a solenoid valve. In this study, the effects of lubricator revolution speed, driving pressure(or plunger stroke) and cylinder back pressure on oil feed rate and lubrication inequality rate are investigated by using the integrated cylinder lubricator system with an accumulated distribution by the electronic control(I.C.S.), and the oil feed rate and lubrication inequality rate of I.C.S. are compared with those of the motor-driven cylinder lubricator by the electronically controlled quill system equipped with an accumulating distributor(E.D.S.). It is found that the oil feed rate of I.C.S. is smaller than that of E.D.S. due to the reduction of delivery velocity by the higher delivery pressure, and the variances of lubrication inequality rate for I.C.S. have become smaller than those of E.D.S. as the driving pressure in all experimental conditions increases, except for the driving pressure of 26 bar(plunger stroke 2 mm) at the cylinder lubricator speed of 120 rpm.

A Study of the Life Test of Hydraulic Pump Driving Gear Box for the Large Excavator (초대형 굴삭기용 유압펌프 구동 기어박스의 수명시험에 관한 연구)

  • Lee, Yong Bum
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.211-216
    • /
    • 2015
  • Large hydraulic excavator weighted 90 tons used the several pumps installed in parallel to use the hydraulic pump driving gearbox to improve fuel consumption by improving the energy efficiency of the hydraulic system. Gearbox connected to hydraulic pump supply the mechanical output to the high pressure and low pressure pump to be supplied by torque and rotation, which are the mechanical power, through a input shaft connected to large size engine of the excavator. So, gearbox connected to hydraulic pump is same as main artery in the human body and is required long life because it operates the hydraulic pump continuously during operating the engine. This study had used oil contamination analysis method to check the wear characteristics of the gearbox and frequency response characteristic analysis method to check the failure of the teeth failures of gearbox, while the test equipment adopted by the electrical feedback method to reduce the energy consumption was operating for the life assessment, in which the required power was 600 kW input power.