• Title/Summary/Keyword: Mechanical fatigue

Search Result 2,385, Processing Time 0.024 seconds

Evaluation on Fatigue Characteristics of Tire Sidewall Rubber according to Aging Temperature

  • Jun, Namgyu;Moon, Byungwoo;Kim, Yongseok;Koo, Jae-Mean;Seok, Chang-Sung;Hong, Ui Seok;Oh, Min Kyeong;Kim, Seong Rae
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.167-172
    • /
    • 2017
  • Ultra-high performance (UHP) tires, for which demand has recently surged, are subject to severe strain conditions due to the low aspect ratio of their sidewalls. It is important to ensure sidewall material durability, since a sudden tire sidewall breakage during vehicle operation is likely to cause a major accident. In the automotive application of rubber parts, cracking is defined as a failure because when cracks occur, the mechanical properties of rubber change. According to Mars, Andre et al., strain and strain energy density (SED) are mainly used as a failure parameters and the SED is generally used as a fatigue damage parameter. In this study, the fatigue life curves of sidewall rubber of tires were determined by using the SED as fatigue damage parameter while the effect of aging on fatigue life was evaluated after obtaining the SED-Nf curves according to aging condition.

Stress based Fatigue Life Prediction for Ball Bearing (응력 기반 볼 베어링의 접촉피로수명 예측)

  • Kim Tae-Wan;Lee Sang-Don;Cho Yong-Joo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.339-349
    • /
    • 2004
  • The method for fatigue life prediction of ball bearing is proposed applying the algorithm of contact fatigue prediction based on stress analysis. In order to do this, a series of simulation such as initial surface stress analysis, EHL analysis, subsurface stress analysis and fatigue analysis are conducted from the loading at each ball location calculated for a bearing subjected to external bearing load and contact shape function. And uniaxial fatigue tests are performed to obtain fatigue parameter of AISI 52100 steel. It was found that since stress is usually higher at the inner raceway contact than at the outer raceway contact, fatigue failure occurs on the inner raceway first. When the fatigue life calculated in the stress-based method are compared with $L_{50}$ life of L-P model, Crossland criterion for the radial load increment is similar to $L_{50}$ life and Dang Van criterion for the axial load increment is similar. In the case of EHL contact. there is no difference of fatigue life between dry contact and EHL contact, when maximum Hertz pressure exceeds 2.5GPa.

  • PDF

Fatigue Strength Depending on Position of Cracks for Weldments

  • Lee Hae-Woo;Park Won-Jo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.675-680
    • /
    • 2006
  • This is a study of fatigue strength of weld deposits with transverse cracks in plate up to 50 mm thick. It is concerned with the fatigue properties of welds already with transverse cracks. A previous study of transverse crack occurrence, location and microstructure in accordance with welding conditions was published in the Welding Journal (Lee et al., 1998). A fatigue crack develops as a result of stress concentration and extends with each load cycle until fatigue occurs, or until the cyclic loads are transferred to redundant members. The fatigue performance of a member is more dependent on the localized state of stress than the static strength of the base metal or the weld metal. Fatigue specimens were machined to have transverse cracks located on the surface and inside the specimen. Evaluation of fatigue strength depending on location of transverse cracks was then performed. When transverse cracks were propagated in a quarter-or half-circle shape, the specimen broke at low cycle in the presence of a surface crack. However, when the crack was inside the specimen, it propagated in a circular or elliptical shape and the specimen showed high fatigue strength, enough to reach the fatigue limit within tolerance of design stresses.

Fatigue Properties of Copper Foil and the Evolution of Surface Roughness

  • Oh, Chung-Seog;Bae, Jong-Sung;Lee, Hak-Joo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.57-62
    • /
    • 2008
  • The aim of this investigation was to extract the fatigue properties at the designated fatigue life of copper foil and observe the mean stress and stress amplitude effects on both the fatigue life and the corresponding surface morphology. Tensile tests were performed to determine the baseline monotonic material properties of the proportional limit and ultimate tensile strength. Constant amplitude fatigue tests were carried out using a feedback-controlled fatigue testing machine. The mean stress and the stress amplitude were changed to obtain the complete nominal stress-life curves. An atomic force microscope was utilized to observe the relationship between the fatigue damage and the corresponding changes in surface morphology. A Basquin's exponent of-0.071 was obtained through the fatigue tests. An endurance limit of 122 MPa was inferred from a Haigh diagram. The specimen surface became rougher as the number of fatigue cycles increased, and there was a close relationship between the fatigue damage and the surface roughness evolution.

The Probabilistic Analysis of Fatigue Damage Accumulation Behavior Using Markov Chain Model in CFRP Composites (Markov Chain Model을 이용한 CFRP 복합재료의 피로손상누적거동에 대한 확률적 해석)

  • Kim, Do-Sik;Kim, In-Bai;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1241-1250
    • /
    • 1996
  • The characteristics of fatigue cumulative damage and fatigue life of 8-harness satin woven CFRP composites with a circular hole under constant amplitude and 2-level block loading are estimated by Stochastic Makov chain model. It is found in this study that the fatigue damage accumulation behavior is very random and the fatigue damage is accumulated as two regions under constant amplitude fatigue loading. In constant amplitude fatigue loading the predicted mean number of cycles to a specified damage state by Markov chain model shows a good agreement with the test result. The predicted distribution of the fatigue cumulative damage by Markov chain model is similar to the test result. The fatigue life predictions under 2-level block loading by Markov chain model revised are good fitted to the test result more than by 2-parameter Weibull distribution function using percent failure rule.

Fatigue Characteristic of Bearing Steel(STB2) in Gigacycle (베어링강의 기가사이클 피로 특성에 관한 연구)

  • KIM SANG-CHUN;SUH CHANG-MIN;HWANG BYUNG-WON;LEE TAE-SUNG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.370-375
    • /
    • 2004
  • Fatigue tests were carried out to find the fatigue characteristics in the super-long life range by using a cantilever type rotational bending fatigue test machine. Three kinds of specimen in bearing steels with the quenched and tempered in air (A and B, B: shot peened after heal treatment) and under vacuum conditions(C:non-shot peened)were tested in this study. S-N curves obtained from fatigue tests of C specimen tend to come dawn again in the super-long life range due to fish-eye type cracking, while most of A and B specimens fractured by surface defects such as scratches and slip lines. This duplex S-N behavior for the high strength steels have to be reviewed by the change of fracture modes.

  • PDF

Variability of Fatigue Crack Initiation Life in Flux Cored Arc Welded API 2W Gr.50 Steel Joints

  • Sohn, Hye-Jeong;Kim, Seon-Jin
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.160-169
    • /
    • 2012
  • Flux Cored Arc Welding (FCAW) is a common practice to join thick plates such as the structural members of large scale offshore structures and very large container ships. The objective of this study was to investigate the mechanical properties and variability of the fatigue crack initiation life in the flux cored arc welded API 2W Gr.50 steel joints typically applied to offshore structures with a focus on the effect of the materials in fatigue crack growth life from the notch root of a compact tension specimen. Offshore structural steel (API 2W Gr.50) plates (60-mm thick) were used to fabricate multi-path flux core arc welded butt welded joints to clearly consider fatigue fractures at the weld zone from the notch. Fatigue tests were performed under a constant amplitude cyclic loading of R = 0.4. The mean fatigue crack initiation life of the HAZ specimen was the highest among the base metal (BM), weld metal (WM), and heat affected zone (HAZ). In addition, the coefficient of variation was the highest in the WMl specimen. The variability of the short fatigue crack growth rates from the notch tips in the WM and HAZ specimens was higher than in BM.

Effects of defence holes on notched strength and fatigue properties in plain woven composite (평직복합재의 노치강도 및 피로특성에 미치는 보조원공의 영향)

  • Kim, Jung-Kyu;Shim, Dong-Suk;Han, Min-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1965-1971
    • /
    • 1997
  • The relaxation of stress concentration in notched members can be very significant in the improvement of notched strength and fatigue life. This paper investigated the relationship of stress concentration factor, and notched strength and fatigue life. The stress concentration factors were analyzed by FEM. Uniaxial tensile and fatigue tests were carried on plain woven composite specimens which have a main hole and two defence holes. From experimental results, the notched strength and the fatigue limit increased up to about 50% and 30% respectively due to the reduction in stress concentration. The fatigue lives predicted by Juvinall's approach were underestimated than test results and this trends were remarkable as nothed strength increased. This is because of the underestimation of a coefficient. A in S-N curve (.sigma.$_{ar}$ =A $N_{f}$ $^{B}$). Therefore, considering notched strength the coefficient A was modified. The fatigue lives by this process were agreed well with the experimental results.sults.

Peel-tension Fatigue Strength of Mechanical Press Joints of Cold Rolled Steel Sheet (냉간 압연강 판재 기계적 접합부의 인장-박리 피로 강도)

  • Lee, Man-Suk;Park, Jong-Min;Kim, Taek-Young;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.42-48
    • /
    • 2012
  • Peel-tension fatigue experiments were conducted for investigating on fatigue strength of mechanical press joints of SPCC steel sheet used in the field of the automobile industry. In addition, finite element method analysis on the peel-tension specimen was conducted using HyperMesh and ABAQUS softwares. The cold rolled mild steel was used to join the T-shaped peel-tension specimen with a button diameter of 5.4 mm and a punch diameter of 8.3 mm. The fatigue limit load amplitude was found to be 112.4 N at the number of cycles 106, indicating that the ratio of fatigue limit load to static peel-tension strength was about 8%. This value suggests that the mechanical press joint is highly vulnerable to peel-tension load rather than to tensile-shear load, considering that the ratio of fatigue limit load to static tensile-shear strength was about 43%. Fatigue failure mode was found to be interface-failure mode.

The Thermal Fatigue Analysis and Life Evaluation of Solder Joint for Flip Chip Package using Darveaux Model (Darveaux 모델에 의한 플립칩 패키지 솔더 접합부의 열피로 해석 및 수명 평가)

  • Shin Young-Eui;Kim Yeon-Sung;Kim Jong-Min;Choi Myun-Gi
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.36-42
    • /
    • 2004
  • Experimental and numerical approaches on the thermal fatigue for the solder joint of flip chip package are discussed. However, it is one of the most difficult problems to choose the proper fatigue model. It was found that viscoplstic FE model with Darveaux method was very desirable and useful to predict the thermal fatigue life of solder joint for flip chip package under $208{\~}423K$ thermal cycling condition such as steep slope of temperature(JEDEC standard condition C). Thermal fatigue life was 1075 cycles as a result of viscoplatic model. It was a good agreement compared to the experimental. And also, it was found from the experimental that probability of the thermal fatigue life was $60{\%}$ at 1500 cycles.