• Title/Summary/Keyword: Mechanical etching

Search Result 400, Processing Time 0.026 seconds

High-Yield Etching-Free Transfer of Graphene: A Fracture Mechanics Approach

  • Yoon, Taeshik;Jo, Woo Sung;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.59-64
    • /
    • 2014
  • Transfer is the critical issue of producing high-quality and scalable graphene electronic devices. However, conventional transfer processes require the removal of an underlying metal layer by wet etching process, which induces significant economic and environmental problems. We propose the etching-free mechanical releasing of graphene using polymer adhesives. A fracture mechanics approach was introduced to understand the releasing mechanism and ensure highyield process. It is shown that the thickness of adhesive and target substrate affect the transferability of graphene. Based on experimental and fracture mechanics simulation results, we further observed that compliant adhesives can reduce the adhesive stress during the transfer, which also enhances the success probability of graphene transfer.

A Study on a Wet etching of ILD (Interlayer Dielectric) Film Wafer (습식 에칭에 의한 웨이퍼의 층간 절연막 가공 특성에 관한 연구)

  • 김도윤;김형재;정해도;이은상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.935-938
    • /
    • 1997
  • Recently, the minimum line width shows a tendency to decrease and the multi-level increase in semiconductor. Therefore, a planarization technique is needed and chemical mechanical polishing(CMP) is considered as one of the most suitable process. CMP accomplishes a high polishing performance and a global planarization of high quality. But there are several defects in CMP such as micro-scratches, abrasive contaminations, and non-uniformity of polished wafer edges. Wet etching include of Spin-etching can improve he defects of CMP. It uses abrasive-free chemical solution instead of slurry. On this study, ILD(INterlayer-Dielectric) was removed by CMP and wet-etching methods in order to investigate the superiority of wet etching mechanism. In the thin film wafer, the results were evaluated at a viewpoint of material removal rate(MRR) and within wafer non-uniformity(WIWNU). And pattern step height was also compared for planarization characteristics of the patterned wafer.

  • PDF

A Study on ILD(Interlayer Dielectric) Planarization of Wafer by DHF (DHF를 적용한 웨이퍼의 층간 절연막 평탄화에 관한 연구)

  • Kim, Do-Youne;Kim, Hyoung-Jae;Jeong, Hae-Do;Lee, Eun-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.149-158
    • /
    • 2002
  • Recently, the minimum line width shows a tendency to decrease and the multi-level increases in semiconductor. Therefore, a planarization technique is needed and chemical mechanical polishing(CMP) is considered as one of the most suitable process. CMP accomplishes a high polishing performance and a global planarization of high quality. However there are several defects in CMF, such as micro-scratches, abrasive contaminations and non-uniformity of polished wafer edges. Wet etching process including spin-etching can eliminate the defects of CMP. It uses abrasive-free chemical solution instead of slurry. On this study, ILD(Interlayer-Dielectric) was removed by CMP and wet etching process using DHF(Diluted HF) in order to investigate the possibility of planrization by wet etching mechanism. In the thin film wafer, the results were evaluated from the viewpoint of material removal rate(MRR) and within wafer non-uniformity(WIWNU). And the pattern step heights were also compared for the purpose of planarity characterization of the patterned wafer. Moreover, Chemical polishing process which is the wet etching process with mechanical energy was introduced and evaluated for examining the characteristics of planarization.

Impact of Wet Etching on the Tribological Performance of 304 Stainless Steel in Hydrogen Compressor Applications

  • Chan-Woo Kim;Sung-Jun Lee;Chang-Lae Kim
    • Tribology and Lubricants
    • /
    • v.40 no.3
    • /
    • pp.71-77
    • /
    • 2024
  • Hydrogen has emerged as an eco-friendly and sustainable alternative to fossil fuels. However, the utilization of hydrogen requires high-pressure compression, storage, and transportation, which poses challenges to the durability of compressor components, particularly the diaphragm. This study aims to improve the durability of 304 stainless steel diaphragms in hydrogen compressors by optimizing their surface roughness and corrosion resistance through wet etching. The specimens were prepared by immersing 304 stainless steel in a mixture of sulfuric acid and hydrogen peroxide, followed by etching in hydrochloric acid for various durations. The surface morphology, roughness, and wettability of the etched specimens were characterized using optical microscopy, surface profilometry, and water contact angle measurements. The friction and wear characteristics were evaluated using reciprocating sliding tests. The results showed that increasing the etching time led to the development of micro/nanostructures on the surface, thereby increasing surface roughness and hydrophilicity. The friction coefficient initially decreased with increasing surface roughness owing to the reduced contact area but increased during long-term wear owing to the destruction and delamination of surface protrusions. HCl-30M exhibited the lowest average friction coefficient and a balance between the surface roughness and oxide film formation, resulting in improved wear resistance. These findings highlight the importance of controlling the surface roughness and oxide film formation through etching optimization to obtain a uniform and wear-resistant surface for the enhanced durability of 304 stainless steel diaphragms in hydrogen compressors.

A Study on the Machining Characteristics of CVD-SiC (CVD-SiC 소재의 가공 특성에 관한 연구)

  • Park, Hwi-Keun;Lee, Won-Seok;Kang, Dong-Won;Park, In-Seung;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.40-46
    • /
    • 2017
  • A plasma gas control apparatus for semiconductor plasma etching processes securely holds a cathode for forming a plasma, confines the plasma during the plasma etching process, and discharges gas after etching. It is a key part of the etching process. With the advancement of semiconductor technology, there is increasing interest in parts for semiconductor manufacturing that directly affect wafers. Accordingly, in order to replace the plasma gas control device with a CVD-SiC material superior in mechanical properties to existing SiCs (Sintered-SiC, RB-SiC), a study on the grinding characteristics of CVD-SiC was carried out. It is confirmed that the optimal grinding condition was obtained when the result table feed rate was 2 m/min and the infeed depth was $5{\mu}m$.

Simulation of Etching Process Using Statistical Method (통계적 기법을 이용한 에칭공정의 시뮬레이션)

  • Jeong, Heung-Cheol;Jung, Ji-Won;Choi, Gyung-Min;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1611-1616
    • /
    • 2004
  • The objective of this study is to simulate the etching characteristics under different process parameters for the optimization of etching process. The etching characteristics such as the etching factor were investigated under different operating conditions and compared with the spray characteristics. The spray characteristics were measured by using Phase Doppler Anemometer. The correlation between the etching characteristics and the spray characteristics was analyzed to simulate the etching characteristics under the actual parameters of the etching process. The parameters were distance of nozzle tip and pipe pitch. To improve the uniformity and value of etching factor in the etching process, the process parameters should be designed optimally. The distribution of spray was simulated by the Monte-Carlo Method and the process parameters were optimized by the design of experiments(DOE).

  • PDF

Simulation of Etching Characteristics with Oscillation Angle in Etching System (에칭시스템에서 요동각 변화에 따른 에칭특성 시뮬레이션)

  • Jeong, Heung-Cheol;Kim, Young-Jin;Jung, Ji-Won;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1534-1539
    • /
    • 2004
  • The objective of this study is to simulate the etching characteristics with oscillation angle for the optimization of etching system. The etching characteristics were analyzed under different etching conditions. The spray characteristics were measured by Phase Doppler Anemometer (PDA). The correlation between the spray characteristics and the etching characteristics was investigated and used for fundamental data to simulate the etching characteristics with oscillation angle. The smaller coefficient of variation, the more uniform etching characteristic distribution became. It was found that numerical predictions of etching factor generally agreed well with the measured results with distance from nozzle tip. Oscillation leads to decrease of etching factor and increase of uniformity.

  • PDF

Surface Modification Method of Stainless Steel using Electrochemical Etching (전기화학적 에칭을 이용한 스테인리스 스틸의 표면 개질)

  • Lee, Chan;Kim, Joonwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.4
    • /
    • pp.353-358
    • /
    • 2014
  • This paper reports a simple, yet effective 1-step surface modification method for stainless steel. Electrochemical etching in dilute Aqua Regia forms hierarchical micro and nanoscale structure on the surface. The surface becomes highly hydrophobic (${\sim}150^{\circ}$) as a result of the etching in terms of static contact angle (CA). However the liquid drops easily pinned on the surface because of high contact angle hysteresis (CAH), which is called a "petal effect": The petal effect occur because of gap between surface microstructures, despite of intrinsic hydrophobicity of the base material. The pore size and period of surface structure can be controlled by applied voltage during the etching. This method can be applied to wide variety of industrial demand for surface modification, while maintaining the advantageous anti-corrosion property of stainless steel.

Design of Single-wafer Wet Etching Bath for Silicon Wafer Etching (실리콘 웨이퍼 습식 식각장치 설계 및 공정개발)

  • Kim, Jae Hwan;Lee, Yongil;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.77-81
    • /
    • 2020
  • Silicon wafer etching in micro electro mechanical systems (MEMS) fabrication is challenging to form 3-D structures. Well known Si-wet etch of silicon employs potassium hydroxide (KOH), tetramethylammonium hydroxide (TMAH) and sodium hydroxide (NaOH). However, the existing silicon wet etching process has a fatal disadvantage that etching of the back side of the wafer is hard to avoid. In this study, a wet etching bath for 150 mm wafers was designed to prevent back-side etching of silicon wafer, and we demonstrated the optimized process recipe to have anisotropic wet etching of silicon wafer without any damage on the backside. We also presented the design of wet bath for 300 mm wafer processing as a promising process development.

Formation of Barrier ribs for PDP by Water Jet Etching of Green Tape

  • Cho, Yu-Jeong;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.784-787
    • /
    • 2003
  • In this study, water jet etching of aqueous green tape was attempted for processing barrier rib of plasma display panel. This process combines 1) chemical etching between water and aqueous based binder in the tape and 2) mechanical erosion by water jet. Effects of etching parameters such as pressure, temperature and aqueous binder content on the morphology of barrier ribs formed were investigated. The results demonstrated a possibility of processing barrier ribs by water jet etching.

  • PDF