• Title/Summary/Keyword: Mechanical engineering

Search Result 42,943, Processing Time 0.068 seconds

The Detailed Design of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Lee, Duk-Hang;Ko, Kyeongyeon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Youngsik;Nam, Ukwon;Kim, Minjin;Ko, Jongwan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.39.3-40
    • /
    • 2015
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is the near-infrared instrument optimized to the first small satellite of NEXTSat series. The capability of both imaging and low spectral resolution spectroscopy in the near-infrared range is a unique function of the NISS. The major scientific mission is to study the cosmic star formation history in local and distant universe. For those purposes, the main targets are nearby galaxies, galaxy clusters, star-forming regions and low background regions. The off-axis optical design of the NISS with two linear variable filters is optimized to have a wide field of view ($2deg.{\times}2deg.$) as well as the wide wavelength range from 0.95 to $3.8{\mu}m$. The mechanical structure is considered to endure the launching condition as well as the space environment. The dewar inside the telescope is designed to operate the infrared detector at 80K stage. From the thermal analysis, we confirmed that the telescope and the dewar can be cooled down to around 200K and 80K, respectively in order to reduce the large amount of thermal noise. The stray light analysis is shown that a light outside a field of view can be reduced below 1%. After the fabrications of the parts of engineering qualification model (EQM), the NSS EQM was successfully assembled and integrated into the satellite. To verify operations of the satellite in space, the space environment tests such as the vibration, shock and thermal-vacuum test were performed. Here, we report the results of the critical design review for the NISS.

  • PDF

Characteristics and Biological Properties of Pleurotus eryngii grown on Monosodium Glutamate-enriched Media (글루탐산나트륨 첨가배지에서 재배된 새송이버섯의 특성 및 생리활성 연구)

  • Yoon, Dong-Yeon;Park, Ki-Moon;Lee, Jae-Heung
    • KSBB Journal
    • /
    • v.25 no.3
    • /
    • pp.277-282
    • /
    • 2010
  • This study was performed to investigate the composition of amino acids and biological properties with the ethanol extract of fruiting bodies of Pleurotus eryngii grown on the sawdust compost mix (400 g sawdust plus 200 g rice bran) supplemented with various dosages of monosodium glutamate (MSG). Amino acid composition analyses showed that arginine, glutamic acid, alanine and glycine increased as the dosage of MSG was increased, whereas histidine, serine, methionine, isoleucine, leucine and phenylalanine did not increase. $\gamma$-Aminobutyric acid (GABA) content increased significantly up to 1.18 mg/g extract when 6 g MSG was supplemented to the sawdust mix. Antioxidant activity of the extract was estimated and compared to the standard antioxidant (ascorbic acid). The antioxidant property such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity increased with the extract samples of increasing dosage of MSG. Although the extract showed low levels of nitrite scavenging activity, this activity increased up to 1.5-2.0 fold when MSG was supplemented to the sawdust mix above a dosage of 0.5 g. The results obtained from the present investigation would appear that Pleurotus eryngii grown on the MSG-enriched sawdust mix can be used more effectively as one of potential sources of functional foods.

Properties and Prediction Model for Ultra High Performance Fiber Reinforced Concrete (UHPFRC): (I) Evaluation of Setting and Shrinkage Characteristics and Tensile Behavior (초고성능 섬유보강 콘크리트(UHPFRC)의 재료 특성 및 예측모델: (I) 응결 및 수축 특성과 인장거동 평가)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.307-315
    • /
    • 2012
  • Recently, ultra high performance fiber reinforced concrete (UHPFRC) having over 180 MPa compressive strength and 10 MPa tensile strength has been developed in Korea. However, UHPFRC represents different material properties with normal concrete (NC) and conventional high performance concrete (HPC) such as a high early age autogenous shrinkage and a rapid dry on the surface, because it has a low water-binder ratio and high fineness admixtures without coarse aggregate. In this study, therefore, to propose suitable experimental methods and regulations, and to evaluate mechanical properties at a very early age for UHPFRC, setting, shrinkage and tensile tests were performed. From the setting test results, paraffin oil was an appropriate material to prevent drying effect on the surface, because if paraffin oil is applied on the surface, it can efficiently prevent the drying effect and does not disturb or catalyze the hydration of cement. From the ring-test results, it was defined that the shrinkage stress is generated at the time when the graph tendency of temperature and strain of inner steel ring is changed. By comparing with setting test result, the shrinkage stress was firstly occurred as the penetration resistance of 1.5 MPa was obtained, and it was about 0.6 and 2.1 hour faster than those of initial and final sets. So, the starting time of autogenous shrinkage measurement (time-zero) of UHPFRC was determined when the penetration resistance of 1.5 MPa was obtained. Finally, the tensile strength and elastic modulus of UHPFRC were measured from near initial setting time by using a very early age tensile test apparatus, and the prediction models for tensile strength and elastic modulus were proposed.

Prediction of Structural Behavior of FRP Rebar Reinforced Concrete Slab based on the Definition of Limit State (한계상태 정의에 따른 FRP Rebar 보강 콘크리트 슬래브의 구조거동 예측)

  • Oh, Hongseob;Kim, Younghwan;Jang, Naksup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.371-381
    • /
    • 2020
  • The failure mode of concrete reinforced with FRP is defined as the concrete crushing and the fiber rupture and the definition of limit state is a slightly different according to the design methods. It is relatively difficult to predict of FRP reinforced concrete because the mechanical properties of fibers are quite depending on its of fibers. The design code by ACI440 committee, which has been developed mainly on GFRP having low modulus of elasticity, is widely used, but the applicability on other FRPs of this code has not been sufficiently verified. In addition, the ultimate and serviceability limit state based on the ACI440 are comparatively difficult to predict the behavior of member with the 0.8~1.2 𝜌b because crushing and rupturing failure can be occurred simultaneously is in this region of reinforcement ratio, and predicted deflection is too sensitive according to the loading condition. Therefore, in this study, reliability and convenience of the prediction of structural performance by design methods such as ACI440 and MC90 concept, respectively, were examined through the experimental results and literature review of the beam and slab with the reinforcement ratio of 0.8 ~ 1.4. As a result of the analysis, it can be applied to the FRP reinforced structure in the case of the simple moment-curvature formula (LIM-MC) of Model Code, and the limit state design method based on the EC2 is more reliable than the ultimate strength design method.

A Study on Planning Car Interior Design through Two Dimensional Lay-Out (2D LAY-OUT을 통한 자동차 실내디자인 계획 방법 연구)

  • 유연식
    • Archives of design research
    • /
    • v.11 no.2
    • /
    • pp.215-226
    • /
    • 1998
  • As late as middle of 1980s, what was referred to as new model cars consisted, on the premise of a standardized packaging layout, principally of the endeavor to transform their style images by changing little by little the form of layouts almosts similar to or with larger bodies than those of the old model ones. Afterwards even in the period of competition of engeineering and mechanical body styles for reducing fuel cost and improving comfortability in riding, the standardized packaging layout did not change visibly, simply trying to ameliorating commercialism through high output and high efficacy on the engineering part. Today the sudden prevalent motorization in every walk of life has brought about the development of the car industry, thus producing surplus supply and technical standardization. This phenomenon of technical standardization leads the concept of the renovation of car design to a way quite different from that of the past and so may be said to be confronted with an era that requires genuine-sense car design in a way. It seems that interior design plans are of much more importance than external shapes. This is because the effort for enhancing comfortability to keep car passengers' needs of transportation is one of the essences of car design. The objective of this study consists in inquiring into how to plan motorcar interior design, an essential prerequisite in determining the external or of a car, obtaining data needed via analysis of interior design plans of the car models that have won favorable criticism from consumers, thus contributing to the use of the data obtained for reference in car design activities in a genuine sense.

  • PDF

Flower Bud Differentiation and Growth Characteristics of Strawberry through Automatic Control of Temperature and Day Length (온도와 일장의 자동조절에 의한 딸기의 화아분화와 생육특성)

  • Kim, Woon-Seop;Kim, Tae-Il;Choi, Jae-Hyeon;Seo, Kwan-Seok;Won, Seung-Ho;Yoon, Wha-Mo
    • Horticultural Science & Technology
    • /
    • v.17 no.3
    • /
    • pp.325-328
    • /
    • 1999
  • This experiment was conducted to investigate the effect of the automatic control of night temperature and day length on the flower bud initiation growth responses and yield of strawberries. Flower bud initiation was observed only 14 days after treatment in plants forced with automatic system but not in plants forced with traditional methods, and flower bud development was further progressed by an automatic system. In genernal, the crown diameter of runner plants derived from strawberries grown with the automatic system was smaller than those from the plants grown under hand-operated system and this tendency was clear in plants placed at middle and low position during forcing. The rate of transpiration was higher in plants treated with hand operated method but the content of chlorophyll was lower than those treated with the automatic system. Results indicated that automatic system has an advantage in stimulation of flower bud initiation and improving the quility of runner plants.

  • PDF

Exhaust Gas Emission and Particulate Matter (PM) from Gasoline, LPG and Diesel Vehicle Using Different Engine Oil (가솔린, LPG, 디젤 차량에서 윤활유에 따른 배출가스 및 입자상물질)

  • Jang, Jinyoung;Lee, Youngjae;Kwon, Ohseok;Woo, Youngmin;Cho, Chongpyo;Kim, Gangchul;Pyo, Youngdug;Lee, Minseob
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.144-151
    • /
    • 2016
  • This study effect of engine oils on regulated fuel economy and emissions including particulate matter (PM) to provide basic data for management of engine oil in vehicles. Three engine oils (Group III base oil, Group III genuine oil with additive package and synthetic oil with poly alpha olefins (PAOs)) were used in one gasoline, one LPG(liquefied petroleum gas) and two diesel vehicles. In the case of diesel vehicles, one is a diesel vehicle without DPF (diesel particulate filter) other is a diesel vehicle with DPF. In this study, the US EPA emission test cycle FTP-75, representing city driving, was used. HORIBA, PIERBURG, and AVL gas analyzers were used to measure the fuel economy and regulated emissions such as CO, NOx, and THC. The number of PM was measured using a PPS (pegasor particle sensor). And, the shape of PMs was analyzed by SEM (scanning electron microscope). The effects of oil type on fuel economy, exhaust gas, and PM were not significant because engine oil consumption by evaporation and combustion in the cylinder is very tiny. Fuel and vehicle type were dominant factors in fuel economy and emissions. HC emission from gasoline vehicles was higher than that from other vehicles and NOx emission from diesel vehicles was higher than that from other vehicles. The number of PM was not affected by the engine oil, but by the driving pattern and fuel. The shapes of the PM, sampled from each vehicle using any test engine oil, were similar.

Aeroelastic Compatibility Substantiation of Aircraft External Stores Using the Dynamic Characteristic Data from Ground Vibration Test (지상진동시험 동특성 데이터를 활용한 항공기 외부장착물의 공력탄성학적 적합성 입증)

  • Lim, Hyun Tae;Kwon, Jae Ryong;Byun, Kwan Hwa;Kim, Hee Joong;Kim, Jae hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.269-275
    • /
    • 2017
  • The aeroelastic stability of a fighter type aircraft can be severly affected by the store mass, aerodynamic characteristics, and store combinations. Hence, the stability for the all store configurations must be substantiated before the aircraft in service. For the aeroelastic analysis, the design data and information for the aircraft structure, mass distribution, control surface characteristics, and external shape etc. are required. This is the reason that the store compatibility substantiations by a third party are restricted. However, according to the change of operational environment or the improvement of avionic technology, a new external store is developed and it should be installed on an aircraft without the support from the original supplier. This paper describe the process to substantiate the aeroelastic compatibility between a new external store and an imported aircraft whose design data is not available to a third party operating the aircraft.

Effects of Wing Twist on Longitudinal Stability of BWB UCAV (날개의 비틀림이 동체-날개 융합익형 무인전투기의 종안정성에 미치는 영향에 대한 연구)

  • Ban, Seokhyun;Lee, Jihyeong;Kim, Sangwook;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Lambda wing type Unmanned Combat Aerial Vehicle(UCAV) which adopts Blended Wing Body(BWB) has relatively less drag and more stealth performance than conventional aircraft. However, Pitching moment is rapidly increased at a specific angle of attack affected by leading edge vortex due to leading edge sweep angle. Wind tunnel testing and numerical analysis were carried out with UCAV 1303 configuration on condition of 50 m/s of flow velocity, $-4^{\circ}{\sim}28^{\circ}$ of the range of angle-of-attack. The effect of wing twist for longitudinal stability at the various angles of attack was verified in this study. When negative twist is applied on the wing, Pitch-break was onset at higher angle of attack due to delayed flow separation on outboard of the wing. On the other hand, pitch-break was onset at lower angle of attack and lift-to-drag ratio was increased when positive twist is applied on the wing.

Antimicrobial Activity and Oxidative Stability of Bamboo Smoke Distillate on Soybean Oil during Storage (죽초액의 항균활성 및 대두유에 대한 산패 억제 효과)

  • Lee, Fan-Zhu;Lee, Byung-Doo;Eun, Jong-Bang
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.816-822
    • /
    • 2006
  • The antimicrobial and antioxidative effect of mechanical bamboo smoke distillate (MBSD) and traditional bamboo smoke distillate (TBSD) were investigated. Antimicrobial activity was demonstrated against all the microorganisms used in this experiment and was the higher in TBSD than in MBSD, with an activity concentration in the range 10-50 ${\mu}m/8$ mm paper disc. At the same concentration the antimicrobial activities of TBSD and MBSD was Gram positive bacteria>gram negative bacteria>Lactotobacillus>yeast. The minimum inhibition concentration (MIC) of BSC was 1.0-7.3${\mu}L/mL$, and the maximum lethal concentration (MLC) was 26.7-116.7 ${\mu}L/mL$. The soybean oil oxidative stability increased with increasing BSD concentration. The induction periods of oil oxidation were 3.75, 4.57 and 12.06 days for the samples with BSD added at 0.1%, 0.5%, and 1.0%, respectively. The RAE in soybean oil with 0.5% BSD was evaluated to be 168.45%, being similar to that of the sample with 0.02% BHT.