• 제목/요약/키워드: Mechanical cooling method

검색결과 543건 처리시간 0.024초

가열 후 냉각조건에 따른 골재 종류별 고강도 콘크리트의 역학적 특성 평가 (Evaluation on Mechanical Properties of High Strength Concrete according to the Aggregate Type and after Heating Cooling Conditions)

  • 윤종일;김규용;남정수;최경철;윤민호;함은영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.99-100
    • /
    • 2012
  • Aggregate thermal properties and cooling methods are most important to evaluate the residual mechanical properties of concrete. In this study, we evaluate the residual mechanical properties of concrete according to the aggregate type and cooling method. We use the normal weight aggregate and light weight aggregate which have different thermal properties. After heating to the target temperature, we evaluate the mechanical properties according to the slow and fast cooling condition. As a result, normal weight aggregate concrete has higher effectiveness of cooling conditions than light weight aggregate concrete.

  • PDF

식각 공정용 냉각시스템에서의 직접 냉각 방식과 간접 냉각 방식에 관한 연구 (A Study on Direct Cooling and Indirect Cooling in Etching Process Cooling System)

  • 장경민;김광선
    • 반도체디스플레이기술학회지
    • /
    • 제17권3호
    • /
    • pp.100-103
    • /
    • 2018
  • Due to the plasma applied from the outside, which acts as an etchant during the etching process, considerable heat is transferred to the wafer and a separate cooling process is performed to effectively remove the heat after the process. In this case, a direct cooling method using a refrigerant is suitable for cooling through effective heat exchange. The direct cooling method using the refrigerant using the latent heat exchange is superior to the cooling method using the sensible heat exchange. Therefore, in this paper, AMESim is used to design a direct refrigerant cooling system using latent heat exchange simulator was built.The constructed simulator is reliable compared with the actual experimental results. It is expected that this simulator will help to design and search for optimal process conditions.

경계요소법을 이용한 사출성형금형 냉각시스템의 최적설계 (Optimum design of injection molding cooling system via boundary element method)

  • 박성진;권태헌
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1773-1785
    • /
    • 1997
  • The cooling stage is the very critical and most time consuming stage of the injection molding process, thus it cleary affects both the productivity and the part quality. Even through there are several commercialized package programs available in the injection molding industry to analyze the cooling performance of the injection molding coling stage, optimization of the cooling system has npt yet been accomplished in the literature due to the difficulty in the sensitivity analysis. However, it would be greatly desirable for the mold cooling system designers to have a computer aided design system for the cooling stage. With this in mind, the present study has successfully developed an interated computer aided design system for the injection molding cooling system. The CAD system utilizes the sensitivity analysis via a Boundary Element Method, which we recently developed, and the well-known CONMIN alforuthm as an optimization technique to minimize a weighted combination (objective function) of the temperature non-uniformity over the part surface and the cooling time related to the productivity with side constranits for the design reality. In the proposed objective function , the weighting parameter between the temperature non-uniiformity abd the cooling time can be adjusted according to user's interest. In this cooling system optimization, various design variable are considered as follows : (i) (design variables related to processing conditions) inlet coolant bulk temperature and volumetric flow rate of each cooling channel, and (ii) (design variables related to mold cooling system design) radius and location of each cooling channel. For this optimum design problem, three different radius and location of each cooling channel. For this optimum design problem, three different strategies are suffested based upon the nature of design variables. Three sample problems were successfully solved to demonstrated the efficiency and the usefulness of the CAD system.

쌍롤식 박판 연속주조공정에 있어서 용탕과 냉각롤의 접촉 열저항을 고려한 전열해석 (Thermal Analysis on Twin-Roll Type Strip Continuous Casting Process Considering Contact Thermal Resistance between Molten Metal and Cooling Roll)

  • 김영도;강충길
    • 대한기계학회논문집A
    • /
    • 제20권1호
    • /
    • pp.189-205
    • /
    • 1996
  • The twin-roll type strip continuous casting process(or direct rolling process) of steel materials is characterized by two rotating water cooled rolls receiving a steady supply of molten metal which solidifies onto the rolls. A solidification analysis of molten metal considering phase transformation and thermofluid is performed using finite diffefence method with curvilinear coordinate to reduce computing time and molten region analysis with arbitrary shape. An enthalpy-specific heat method is used to determine the temperatures inthe roll and the steel. The temperature distribution of cooling roll is calculated using two dimensional finite element method, because of complex roll shape due to cooling hole in rolls and improvemnt accuracy of calculation result. The energy equaiton of cooling roll is solved simultanuously with the conservation equaiton of molten metal in order to consider heat transfer through the cooling roll. The calculated roll temperature is compared to experimental results and the heat transfer coefficient between cooling roll surface and rolling material(steel) is also determined from comparison of measured roll temperature and calculated temperature.

광섬유 냉각장치의 헬륨 주입기 설계를 위한 전산열유동해석 (Computational Thermo-Fluid Analysis for the Effects of Helium Injection Methods on Glass Fiber Cooling Process in an Optical Fiber Manufacturing System)

  • 박신;김경진;김동주;박준영;곽호상
    • 한국기계가공학회지
    • /
    • 제13권2호
    • /
    • pp.124-130
    • /
    • 2014
  • In a mass manufacturing system of optical fibers, the sufficient cooling of glass fibers freshly drawn from a draw furnace is essential, asinadequately cooled glass fibers can lead to poor resin coating on the fiber surface and possibly fiber breakage during the process. In order to improve fiber cooling at a high drawing speed, it is common to use a helium injection into a glass fiber cooling unit in spite of the high cost of the helium supply. The present numerical analysis carried out three-dimensional thermo-fluid computations of the cooling gas flow and heat transfer on moving glass fiber to determine the cooling performance of glass fiber cooling depending on the method of helium injection. The results showed that afront injection of helium is most effective compared to a uniform or rear injection for reducing air entrainment into the unit and thus cooling the glass fibers at a high fiber drawing speed. However, above a certain amount of injected helium, there was no more increase of the cooling effect regardless of the helium injection method.

바이 모달 트램의 전기 제어 장치용 냉각장치에 관한 연구 (A Study on the Electronically Controlled Cooling system for Bimodal Tram)

  • 김창욱;김혜수;송정일
    • 한국기계가공학회지
    • /
    • 제13권4호
    • /
    • pp.91-98
    • /
    • 2014
  • In this study, the first and second electronically controlled cooling systems for a bimodal tram were developed. The performance characteristics of the cooling systems were assessed experimentally with actual and identical conditions, and a simulation was run using ANSYS Fluent. The results of the experimental and FEA method were standardized. In order to confirm the reliability of the experimental method, the experiment was carried out by a testing institution. The low-volume flow-rate condition was found to be better, but the cooling system performed in a minimal condition. Therefore, it is important to find the optimum performance levels. The cooling system equipment was revised to determine the optimized design parameters, after which the cooling performance levels increased at the radiation area. Specifically, with a greater fan diameter. Through this study, the newly developed cooling system will be reevaluated after being mounted on an actual bimodal tram. This will lead to a completely domestically produced bi-modal tram cooling system.

18650 Li-ion battery Module의 Cell-to-Cell 온도 편차 최소화를 위한 양방향 냉각에 대한 실험적 연구 (Experimental Study on Bi-directional Air Cooling System for 18650 Li-ion Battery Module to Minimize Cell-to-Cell Temperature Variation)

  • 장호선;박민규;전지환;박성수;김태우;박성진
    • 한국수소및신에너지학회논문집
    • /
    • 제28권4호
    • /
    • pp.407-418
    • /
    • 2017
  • Battery heat management is essential for high power and high energy battery system because it affects its performance, longevity, and safety. In this paper, we investigated the temperature of the 18650 Lithium Ion Battery Module used in a Energy Storage System (ESS) and the cooling method to minimize cell-to-cell temperature variation of battery module. For uniform temperature distribution within a battery module, the flow direction of the coolant in a battery module has been changed according to the time interval, and studied the effect of the cooling method on the temperature uniformity in a battery module which includes a number of battery cells. The experimental results show that bi-directional battery cooling method can effectively reduce the cell-to-cell temperature variation compared with the one-directional battery cooling. Furthermore, it is also found that bi-directional battery cooling can reduce the maximum temperature in a battery module.

치과용 티타늄 주조체의 냉각방법이 표면반응층 및 기계적 특성에 미치는 영향 (Effects of Cooling Method Followed by Casting on the Interfacial and Mechanical Properties of Dental CP-Ti Casts)

  • 문수;정준영;김기주;이진형
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권5호
    • /
    • pp.375-380
    • /
    • 2003
  • 순수티타늄과 산화물계 주형재의 표변반응층을 제어하는 방법을 제시하기 위하여 치과용 인산염계 실리카·알루미나 주형재에 CP-Ti를 원심주조법으로 주조하고, 주조 후 냉각방법에 따른 치과용 티타늄 주조체의 표면반응층 및 기계적 특성에 미치는 영향을 조사하였다. 주조체는 주조 후 냉각방법에 관계없이 다층구조의 표면 반응층을 보였으며, 특히 수냉 방법이 공냉에 비해 표면반응층의 두께가 얇게 형성되었고, 강도는 약하고 연신율은 높게 나타나서, 치과용주조체로 만족할만한 기계적 성질을 얻을 수 있었다. 이러한 결과는, 용해분위기에서 산소의 침입과 주조시 주형재의 반응을 주도하는 냉각속도의 차이에 기인하는 것으로 판단된다.

Numerical Study on the Performance Analysis of Plume Abatement Cooling Tower with Dry Type Heat Exchanger

  • Kim, Byung-Jo;Choi, Young-Ki
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권2호
    • /
    • pp.61-70
    • /
    • 2005
  • This study treats the numerical analysis of performance and design for plume abatement wet/dry cooling tower with a dry type heat exchanger. A two-dimensional analysis is performed using the finite volume method for mechanical draft counterflow and crossflow tower. For a coupling problem between water and air system, a turbulent two phase flow is considered. The Effectiveness-NTU method is used for modeling of the dry type heat exchanger. The parametric simulations such as the relative flowrate of air and attachment length of an air mixer are performed to examine the effect on plume abatement. It is found that if the relative air flowrate ratio and the adequate air mixer type are chosen well in addition to the ratio of water to air flowrate, the loss of cooling capacity and the additional cost are reduced and the plume is abated.

신경회로망기법을 사용한 원통형 막냉각 홀의 최적설계 (Design Optimization of a Cylindrical Film-Cooling Hole Using Neural Network Techniques)

  • 이기돈;김광용
    • 대한기계학회논문집B
    • /
    • 제32권12호
    • /
    • pp.954-962
    • /
    • 2008
  • This study presents a numerical procedure to optimize the shape of cylindrical cooling hole to enhance film-cooling effectiveness. The RBNN method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The hole length-to-diameter ratio and injection angle are chosen as design variables and film-cooling effectiveness is considered as objective function which is to be maximized. Twelve training points are obtained by Latin Hypercube Sampling for two design variables. In the sensitivity analysis, it is found that the objective function is more sensitive to the injection angle of hole than the hole length-to diameter ratio. Optimum shape gives considerable increase in film-cooling effectiveness.