• 제목/요약/키워드: Mechanical behaviour

검색결과 694건 처리시간 0.026초

Steel fibre and transverse reinforcement effects on the behaviour of high strength concrete beams

  • Cucchiara, Calogero;Fossetti, Marinella;Papia, Maurizio
    • Structural Engineering and Mechanics
    • /
    • 제42권4호
    • /
    • pp.551-570
    • /
    • 2012
  • An experimental program was carried out to investigate the influence of fibre reinforcement on the mechanical behaviour of high strength reinforced concrete beams. Eighteen beams, loaded in four-point bending tests, were examined by applying monotonically increasing controlled displacements and recording the response in terms of load-deflection curves up to failure. The major test variables were the volume fraction of steel fibres and the transverse steel amount for two different values of shear span. The contribution of the stirrups to the shear strength was derived from the deformations of their vertical legs, measured by means of strain gauges. The structural response of the tested beams was analyzed to evaluate strength, stiffness, energy absorption capacity and failure mode. The experimental results and observed behaviour are in good agreement with those obtained by other authors, confirming that an adequate amount of steel fibres in the concrete can be an alternative solution for minimizing the density of transverse reinforcement. However, the paper shows that the use of different theoretical or semi-empirical models, available in literature, leads to different predictions of the ultimate load in the case of dominant shear failure mode.

RPUM 강관의 효율적인 설계기법에 관한 연구 (A Study on Efficient Design Technique of RPUM Steel Pipes)

  • 김정수;박태순
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.1354-1363
    • /
    • 2006
  • Until now, NATM(New Austrian Tunneling Method) has been increasingly developed based on concept of making use of ground as support. Also, NATM in its essence is a method of risk based on monitoring behaviour of tunnel. This Monitoring is irreplaceable for the quality construction of tunnel, and safety of tunnel itself. Pre-reinforcement ahead of a tunnel face using long steel pipes in NATM, known as the RPUM(Reinforced Protective Umbrella Method), is the auxiliary method to sustain the stability of a tunnel face and reduce the ground settlements. Since design of RPUM has been dependent on the empirical design, it is necessary to develop the improved design methods. In this study, to understand behaviour of steel pipes, it is monitored displacement of tunnel crown, axial force of rock bolt, displacement and axial stress of steel pipes. Also, in order to clarify the mechanical behaviour and RPUM effects, 3-Dimensional numerical analysis is performed that various cases of different parameter combinations including original length and repeated length of steel pipes, installation width and angle, repeated length of steel. In the results of comparison monitoring with analysis, it is suggested more economical and efficient design technique than empirical design methods.

  • PDF

구치부(臼齒部) 수복용(修復用) Composite Resin의 파괴거동(破壞擧動)에 관(關)한 연구(硏究) (FRACTURE BEHAVIOUR OF POSTERIOR COMPOSITE RESINS)

  • 박영호;민병순;박상진;최호영
    • Restorative Dentistry and Endodontics
    • /
    • 제12권2호
    • /
    • pp.33-44
    • /
    • 1987
  • The use of composite resin for the posterior teeth gives rise to clinical problem due to the lack of mechanical properties. The purpose of this study was to observe the fractured surfaces of light posterior composite resins which are P-10, Clearfil posterior, Adaptic anterior & posterior, P-30, Lite-fil posterior, Estilux posterior, Helio-molar, and Ful-fil com pules (Table 1). The failure of composite resin specimens of I, T and Y-Type (Fig. 1,2) occured under compression. Fractographical observations by SEM (JSM-T20, JEOL) were carried out in order to examine the fracture behaviour of eight composite resins in different types of specimens. The results obtained from this study were as follows: 1. Similar features were found in fractured surfaces of eight composite resins. 2. The crack growth was initiated at the regions of porosities. 3. The crack propagated on the filler-matrix interface. 4. As the crack increased in size, it accelerated to form secondary crack. 5. The fracture behaviour was dependent on the content, size, shape, and distribution of fillers.

  • PDF

Comparison of macrosynthetic and steel FRC shear-critical beams with similar residual flexure tensile strengths

  • Ortiz-Navas, Francisco;Navarro-Gregori, Juan;Leiva, Gabriel;Serna, Pedro
    • Structural Engineering and Mechanics
    • /
    • 제76권4호
    • /
    • pp.491-503
    • /
    • 2020
  • This study extends previous experimental research on the shear behaviour of macrosynthetic fibre-reinforced concrete beams and compares them to steel fibre-reinforced concrete beams with similar mechanical and geometrical properties. This work employed two fibre types: 60/0.9 (long/diameter) double hooked-end steel fibre and 60/85 monofilament polypropylene fibre. Beams were tested by shear loading covering parameters, such as two different cross-section widths, two shear-span-to-effective-depth ratios, two fibre types and using repetitions with and without transverse reinforcement. For quantitative comparison purposes, crack pattern evolution was studied along increasing loads levels. Effects were studied by photogrammetry, including influence of fibres on crack propagation in uncracked and dowel zones, influence of fibres on stirrup behaviour, and shear deformation or kinematics of critical shear cracks. The results evidenced similar effectiveness for both fibre types in controlling shear crack propagation and horizontal dowel cracking. Both fibres provided similar shear ductility and shear deflections. Consequently, the authors confirm that residual flexural tensile strengths are a convenient parameter for characterising the shear behaviour of fibre-reinforced concrete beams.

Strength and mechanical behaviour of coir reinforced lime stabilized soil

  • Sujatha, Evangelin Ramani;Geetha, A.R.;Jananee, R.;Karunya, S.R.
    • Geomechanics and Engineering
    • /
    • 제16권6호
    • /
    • pp.627-634
    • /
    • 2018
  • Soil stabilization is an essential engineering process to enhance the geotechnical properties of soils that are not suitable for construction purposes. This study focuses on using coconut coir, a natural fibre to enhance the soil properties. Lime, an activator is added to the reinforced soil to augment its shear strength and durability. An experimental investigation was conducted to demonstrate the effect of coconut coir fibers and lime on the consistency limits, compaction characteristics, unconfined compressive strength, stress-strain behaviour, subgrade strength and durability of the treated soil. The results of the study illustrate that lime stabilization and coir reinforcement improves the unconfined compressive strength, post peak failure strength, controls crack propagation and boosts the tensile strength of the soil. Coir reinforcement provides addition contact surface, improving the soil-fibre interaction and increasing the interlocking between fibre and soil and thereby improve strength. Optimum performance of soil is observed at 1.25% coir fibre inclusion. Coir being a natural product is prone to degradation and to increase the durability of the coir reinforced soil, lime is used. Lime stabilization favourably amends the geotechnical properties of the coir fibre reinforced soil.

Behaviour and design of high-strength steel beam-to-column joints

  • Li, Dongxu;Uy, Brian;Wang, Jia
    • Steel and Composite Structures
    • /
    • 제31권3호
    • /
    • pp.303-317
    • /
    • 2019
  • This paper presents a finite element model for predicting the behaviour of high-strength steel bolted beam-to-column joints under monotonic loading. The developed numerical model considers the effects of material nonlinearities and geometric nonlinearities. The accuracy of the developed model is examined by comparing the predicted results with independent experimental results. It is demonstrated that the proposed model accurately predicts the ultimate flexural resistances and moment-rotation curves for high-strength steel bolted beam-to-column joints. Mechanical performance of three joint configurations with various design details is examined. A parametric study is carried out to investigate the effects of key design parameters on the behaviour of bolted beam-to-column joints with double-extended endplates. The plastic flexural capacities of the beam-to-column joints from the experimental programme and numerical analysis are compared with the current codes of practice. It is found that the initial stiffness and plastic flexural resistance of the high-strength steel beam-to-column joints are overestimated. Proper modifications need to be conducted to ensure the current analytical method can be safely used for the bolted beam-to-column joints with high-performance materials.

Determination of slip modulus of cold-formed steel composite members sheathed with plywood structural panels

  • Karki, Dheeraj;Far, Harry;Al-hunity, Suleiman
    • Steel and Composite Structures
    • /
    • 제43권4호
    • /
    • pp.511-522
    • /
    • 2022
  • An experimental investigation to study the behaviour of connections between cold-formed steel (CFS) joist and plywood structural panel is presented in this paper. Material testing on CFS and plywood was carried out to assess their mechanical properties and behaviour. Push-out tests were conducted to determine the slip modulus and failure modes of three different shear connection types. The employed shear connectors in the study were; size 14 (6mm diameter) self-drilling screw, M12 coach screw, and M12 nut and bolt. The effective bending stiffness of composite cold-formed steel and plywood T-beam assembly is calculated based on the slip modulus values computed from push-out tests. The effective bending stiffness was increased by 25.5%, 18% and 30.2% for self-drilling screw, coach screw, nut and bolt, respectively, over the stiffness of cold-formed steel joist alone. This finding suggests the potential to enhance the structural performance of composite cold-formed steel and timber flooring system by mobilisation of composite action present between timber sheathing and CFS joist.

Mechanical model for seismic response assessment of lightly reinforced concrete walls

  • Brunesi, E.;Nascimbene, R.;Pavese, A.
    • Earthquakes and Structures
    • /
    • 제11권3호
    • /
    • pp.461-481
    • /
    • 2016
  • The research described in this paper investigates the seismic behaviour of lightly reinforced concrete (RC) bearing sandwich panels, heavily conditioned by shear deformation. A numerical model has been prepared, within an open source finite element (FE) platform, to simulate the experimental response of this emerging structural system, whose squat-type geometry affects performance and failure mode. Calibration of this equivalent mechanical model, consisting of a group of regularly spaced vertical elements in combination with a layer of nonlinear springs, which represent the cyclic behaviour of concrete and steel, has been conducted by means of a series of pseudo-static cyclic tests performed on single full-scale prototypes with or without openings. Both cantilevered and fixed-end shear walls have been analyzed. After validation, this numerical procedure, including cyclic-related mechanisms, such as buckling and subsequent slippage of reinforcing re-bars, as well as concrete crushing at the base of the wall, has been used to assess the capacity of two- and three-dimensional low- to mid-rise box-type buildings and, hence, to estimate their strength reduction factors, on the basis of conventional pushover analyses.

Mechanical behaviour of concrete filled double skin steel tubular stub columns confined by FRP under axial compression

  • Wang, Jun;Liu, Weiqing;Zhou, Ding;Zhu, Lu;Fang, Hai
    • Steel and Composite Structures
    • /
    • 제17권4호
    • /
    • pp.431-452
    • /
    • 2014
  • The present study focuses on the mechanical behaviour of concrete filled double skin steel tubular (CFDST) stub columns confined by fiber reinforced polymer (FRP). A series of axial compression tests have been conducted on two CFDST stub columns, eight CFDST stub columns confined by FRP and a concrete-filled steel tubular (CFST) stub column confined by FRP, respectively. The influences of hollow section ratio, FRP wall thickness and fibre longitudinal-circumferential proportion on the load-strain curve and the concrete stress-strain curve for stub columns with annular section were discussed. The test results displayed that the FRP jacket can obviously enhance the carrying capacity of stub columns. Based on the test results, a new model which includes the effects of confinement factor, hollow section ratio and lateral confining pressure of the outer steel tube was proposed to calculate the compressive strength of confined concrete. Using the present concrete strength model, the formula to predict the carrying capacity of CFDST stub columns confined by FRP was derived. The theoretically predicted results agree well with those obtained from the experiments and FE analysis. The present method is also adapted to calculate the carrying capacity of CFST stub columns confined by FRP.

인공해수중에서 연강 용접부의 표면구열 성장거동 (Study on Surface Crack Propagation Behaviour of Mild Steel Weldment in Synthetic Sea Water)

  • 이종기;정세희
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.492-501
    • /
    • 1990
  • It was known that the fracture incidences of offshore structure were mostly originated from the surface defects. Especially, in the case of the welded structures, since the welded region has some defects and incomplete beads which are apt to behave like the surface cracks, it has been necessary to evaluate the environmental effects on crack growth at HAZ for the design crack growth behaviour at multi-pall HAZ for SWS41 steel under free corrosion and cathodic protection(-0.9V vs Ag/Agcl) conditions. The results are summarized as follows ; (1) Crack growth rate of the as weld in air was faster than that of the parent and PWHT specimens over all .DELTA.K rang. (2) In free corrosion test, surface crack growth rate of the as welded was decreased in comparison with that of the parents. (3) In fatigue test under cathodic protection, cathodic electric potential(-0.9V vs Ag/Agcl) for the SWS41 steel parent was effective, while for the as welded ineffective. (4) There was a tendency that the exponent(m) of the Paris' equation was decreased in order of microhardness magnititude in air and under cathodic protection conditions and vise versa in free corrosion. (5) Fracture surface has dimples and ductile striations in air test, but transgranular cracks and brittle striations under cathodic protection test.