• Title/Summary/Keyword: Mechanical Polishing

Search Result 768, Processing Time 0.025 seconds

Chemical Mechanical Polishing Characteristics with Different Slurry and Pad (슬러리 및 패드 변화에 따른 기계화학적인 연마 특성)

  • 서용진;정소영;김상용
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.10
    • /
    • pp.441-446
    • /
    • 2003
  • The chemical mechanical polishing (CMP) process is now widely employed in the ultra large scale integrated (ULSI) semiconductor fabrication. Especially, shallow trench isolation (STI) has become a key isolation scheme for sub-0.13/0.10${\mu}{\textrm}{m}$ CMOS technology. The most important issues of STI-CMP is to decrease the various defects such as nitride residue, dishing, and tom oxide. To solve these problems, in this paper, we studied the planarization characteristics using slurry additive with the high selectivity between $SiO_2$ and $Si_3$$N_4$ films for the purpose of process simplification and in-situ end point detection. As our experimental results, it was possible to achieve a global planarization and STI-CMP process could be dramatically simplified. Also, we estimated the reliability through the repeated tests with the optimized process conditions in order to identify the reproducibility of STI-CMP process.

Reproducible Chemical Mechanical Polishing Characteristics of Shallow Trench Isolation Structure using High Selectivity Slurry

  • Jeong, So-Young;Seo, Yong-Jin;Kim, Sang-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.4
    • /
    • pp.5-9
    • /
    • 2002
  • Chemical mechanical polishing (CMP) has become the preferred planarization method for multilevel interconnect technology due to its ability to achieve a high degree of feature level planarity. Especially, to achieve the higher density and greater performance, shallow trench isolation (STI)-CMP process has been attracted attention for multilevel interconnection as an essential isolation technology. Also, it was possible to apply the direct STI-CMP process without reverse moat etch step using high selectivity slurry (HSS). In this work, we determined the process margin with optimized process conditions to apply HSS STI-CMP process. Then, we evaluated the reliability and reproducibility of STI-CMP process through the optimal process conditions. The wafer-to-wafer thickness variation and day-by-day reproducibility of STI-CMP process after repeatable tests were investigated. Our experimental results show, quite acceptable and reproducible CMP results with a wafer-to-wafer thickness variation within 400$\AA$.

Atomistic Modeling of Spherical Nano Abrasive-Substrate Interaction (절삭용 구형나노입자와 기판 상호작용에 관한 원자단위 모델링)

  • 강정원;송기오;최원영;변기량;이재경;황호정
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1157-1164
    • /
    • 2003
  • This paper shows the results of atomistic modeling for the interaction between spherical nano abrasive and substrate in chemical mechanical polishing processes. Atomistic modeling was achieved from 2-dimensional molecular dynamics simulations using the Lennard-Jones 12-6 potentials. The abrasive dynamics was modeled by three cases, such as slipping, rolling, and rotating. Simulation results showed that the different dynamics of the abrasive results the different features of surfaces. This model can be extended to investigate the 3-dimensional chemical mechanical polishing processes.

A Novel Sub-Micron Gap Fabrication Technology using Chemical-Mechanical Polishing (CMP) for Lateral Field Emission Device (FED) (측면 전계 방출 소자를 위한 화학적-기계적 연마를 이용한 새로운 미소 간격 제작 기술)

  • Lee, Chun-Seop;Han, Cheol-Hui
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.9
    • /
    • pp.466-470
    • /
    • 2001
  • We have developed a sub-micron gap fabrication technology using chemical-mechanical polishing (CMP) without /the sub-micron lithography equipments (0.18∼0.25 7m). And it has been applied to a lateral field emission device (FED), in which narrow gap distance is very important for reducing turn-on voltage. As a result, the turn-on voltage (at which the current level is 1 nA) of the fabricated device with the gap distance of 256 nm is as low as 4.0 V, which is the lowest turn-on voltage among lateral FEDs ever reported.

  • PDF

Chemical Mechanical Polishing Characteristics of PZT Thin Films (PZT 박막의 화학.기계적 연마 특성)

  • Seo, Yong-Jin;Lee, Woo-Sun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.12
    • /
    • pp.549-554
    • /
    • 2006
  • In this paper we first applied the chemical mechanical polishing (CMP) process to the planarization of ferroelectric film in order to obtain a good planarity between electrode and ferroelectric film. $Pb_{1.1}(Zr_{0.52}Ti_{0.48})O_3$ (shortly PZT) ferroelectric film was fabricated by the sol-gel method. And then, we compared the structural characteristics before and after CMP process of PZT films. Removal rate, WIWNU% and surface roughness have been found to depend on slurry abrasive types and their hardness, especially, surface roughness and planarity were strongly depends on its pH value. A maximum in the removal rate is observed in the silica slurry, in contrast with the minimum removal rate occurs at ceria slurry. We found that the surface roughness of PZT films can be significantly reduced using the CMP technique.

Study on Characteristics of Chemical Mechanical Polishing of BTO Thin Film (BTO 박막의 화학적 기계적 연마 특성 연구)

  • Ko, Pil-Ju;Kim, Nam-Hoon;Park, Jin-Seong;Seo, Yong-Jin;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.113-114
    • /
    • 2005
  • Sufficient removal rate with adequate selectivity to realize the pattern mask of tetra-ethyl ortho-silicate (TEOS) film for the vertical sidewall angle were obtained by chemical mechanical polishing (CMP) with commercial silica slurry as a function of pH variation. The changes of X-ray diffraction pattern and dielectric constant by CMP process were negligible.

  • PDF

Methodological Study for Recycle of Chemical Mechanical Polishing Slurry (슬러리 Modification 에 대한 연구)

  • Park, Sung-Woo;Seo, Yong-Jin;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.567-568
    • /
    • 2006
  • To investigate the recycle possibility of slurry for the oxide-chemical mechanical polishing (oxide-CMP) application, three kinds of retreated methods were introduced as follows: First, the effects on the addition of silica abrasives and the diluted silica slurry (DSS) on CMP performances were investigated. Second, the characteristics of mixed abrasive slurry (MAS) using non-annealed and annealed alumina ($Al_2O_3$) powder as an abrasive added within DSS were evaluated to achieve the improvement of removal rates (RRs) and within-wafer non-uniformity (WIWNU%). Third, the oxide-CMP wastewater was examined in order to evaluate the possible ways of reusing it. And then, we have discussed the CMP characteristics of silica slurry retreated by mixing of original slurry and used slurry (MOS).

  • PDF

AFM based Surface Verifications of Pulse Electrochemical Polishing for Various Frequency Conditions (주파수 변화에 따른 AFM 기반의 펄스 전기화학 폴리싱 표면특성 분석)

  • Kim, Young-Bin;Kim, Jong-Tye;Ahn, Dong-Gyu;Park, Jong-Rak;Jeong, Sang-Hwa;Park, Jeong-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.246-251
    • /
    • 2012
  • Pulse electrochemical polishing process has been used to improve mechanical properties such as surface roughness and corrosion resistance on conductive metallic materials. In addition, pulse electrochemical polishing process with various frequency may produce a lustrous, smoother, deburred and cleaned surface on workpiece. The aim of this paper is to study surface characteristics of pulse electrochemical polishing for various frequency conditions using AFM to verify localized surface variation in nanometer scale.

A development of automated polishing apparatus for surface quality and uniformity of multi-cavity preform injection mold core (Multi-cavity 프리폼 사출 금형 코어의 표면 품질 및 균일도 향상을 위한 연마 자동화 기구 개발)

  • Lee, Jeong-Won;Seo, Keum-Hee;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.41-45
    • /
    • 2014
  • Automated polishing apparatus based on the research have been developed. The research is improvement of polishing process for surface quality and uniformity improvement of preform injection mold core. Surface quality of preform core have influence on ejecting and product quality after injection molding. Thus, the current being made by hand to automate the polishing process, the surface of the preform to improve the quality and uniformity improvement. First made a division by analyzing manual process a step-by-step. And draw a mechanism for converting mechanical movement. Automated polishing apparatus for preform core was developed, through which shortens production time and were able to secure the safety of the worker.

  • PDF

Magnetic Abrasive Polishing for Internal Face of Seamless Stainless Steel Tube using Sludge Abrasive Grain

  • Kim, Hee-Nam
    • Journal of the Speleological Society of Korea
    • /
    • no.78
    • /
    • pp.23-27
    • /
    • 2007
  • In this paper, we have investigated the characteristics of the magnetic abrasive using sludge on polishing of internal finishing of seamless stainless steel tube applying magnetic abrasive polishing. Either white alumina grain was used to resin sludge at a low temperature, and the sludge of magnetic abrasive powder was synthesized and crushed into 200 meshes. Surface roughness was measured before and after polishing, and more than 40% of improvement of surface roughness was achieved when grain was used under a specific condition. Even though some degree of surface roughness due to deeper scratches still exist, but the result showed a prospective magnetic abrasive polishing using sludge with white alumina grains.