• Title/Summary/Keyword: Mechanical Clearance

Search Result 388, Processing Time 0.025 seconds

Mechanical Error Analysis and Tolerance Design of A Four-Bar Path Generator With Lubricated Joints (윤활특성을 고려한 사절경로 발생기구의 기계적 오차해석 및 공차설계)

  • Choi, Jin-Ho;Lee, S.J;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.327-336
    • /
    • 1997
  • This paper addresses an analytical approach to the mechanical error analysis and tolerance design of a four-bar path generator with lubricated joints. The mobility method is applied to consider lubrication effects and the four-bar path generator is stochastically modeled by using the clearance vector model for methanical error analysis. To show the validity of the proposed method, the mechanical errors obtained by applying the method to a four-bar path generator are compared with those by Monte Carlo simulation. Based on this analytical method, an optimal tolerance design problem is formulated and solved for the four-bar path generator.

Analysis of Dynamic Characteristics of a Piston for a Linear Compressor Considering Changes in Groove Geometry (리니어 압축기에서 그루브 형상 변화에 따른피스톤의 동특성 해석)

  • Noh, Sangwan;Oh, Wonsik;Park, Kyeongbae;Rhim, Yoonchul
    • Tribology and Lubricants
    • /
    • v.31 no.5
    • /
    • pp.221-228
    • /
    • 2015
  • It is possible to prevent a piston from contacting the cylinder by changing the shape of the piston or by applying micro-textures, such as micro-grooves or micro-holes, over the piston surface. Usually, the minimum radial clearance reaches its minimum value at the beginning of the suction stroke because the pressure around the piston is low and almost axisymmetric such that the net pressure force on the piston is not sufficiently high to support the piston from touching the cylinder. In this study, we apply a series of saw-tooth-shaped grooves on the piston surface, and numerically investigate the effects of groove depth, groove angle, and the number of grooves with radial clearance variations using a finite difference method. We conduct a dynamic analysis of the piston for various changes in groove geometries to obtain the minimum radial clearance variation for the entire compression cycle. The minimum radial clearance increases while friction loss decreases when we apply the series of saw-tooth-shaped grooves on the piston. In addition, we analyze the impact of the change in the groove shape variable due to changes in radial clearance. Leakage variations are relevant to radial clearance, but have almost no effect on the groove parameters.

Rotordynamic Model Development with Consideration of Rotor Core Laminations for 2.2 kW-Class Squirrel-Cage Type Induction Motors and Influence Investigation of Bearing Clearance (2.2 kW급 유도전동기의 회전자 적층구조를 고려한 회전체 동역학 해석모델 개발 및 베어링 간극의 영향 분석)

  • Park, Jisu;Sim, Kyuho;Lee, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.35 no.3
    • /
    • pp.158-168
    • /
    • 2019
  • This paper presents the investigation of two types of rotordynamic modeling issues for 2.2 kW-class, rated speed of 1,800 rpm, squirrel-cage type induction motors. These issues include the lamination structure of rotor cores, and the radial clearance of ball bearings that support the shaft of the motor. Firstly, we focus on identifying the effects of rotor core lamination on the rotordynamic analysis via a 2D prediction model. The influence of lamination is considered as the change in the elastic modulus of the rotor core, which is determined by a modification factor ranging from 0 to 1.0. The analysis results show that the unbalanced response of the rotor-bearing system significantly varies depending on the value of the modification factor. Through modal testing of the system, the modification factor of 0.079 is proven to be appropriate to consider the effects of lamination. Next, we investigate the influence of ball bearing clearance on the rotordynamic analysis by establishing a bearing analysis model based on Hertz's contact theory. The analysis results indicate that negative clearance greatly changes the bearing static behavior. Rotordynamic analysis using predicted bearing stiffness with various clearances from -0.005 mm to 0.010 mm reveals that variations in clearance result in a slight difference in the displacement of the system up to 18.18. Thus, considering lamination in rotordynamic analysis is necessary as it can cause serious analysis errors in unbalanced response. However, considering the effect of the bearing clearance is optional because of its relatively weak impact.

Study on tolerance and reliability analysis of mechanical systems with uncertainty (불확정성을 고려한 기계 시스템의 공차해석 및 신뢰도 해석에 관한 연구)

  • Choe, Jin-Ho;Lee, Se-Jeong;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.215-226
    • /
    • 1998
  • This paper addresses an analytical approach to tolerance and reliability analysis of mechanical systems with uncertainty. Many mechanical systems consist of links and lubricated joints. The mobility method is applied to consider lubrication effects and the clearance vector model is used to stochastically define a mechanism for tolerance and reliability analysis. To show the validity of the proposed method, a four-bar path generator and a slider-crank mechanism are considered. The results obtained by applying the proposed method are compared with those by Monte-Carlo simulation.

A Study on the Turbine Performance in the steam seal variable clearance packing type of Steam turbine (증기터빈의 가변패킹 형태에 따른 터빈성능 평가에 관한 연구)

  • Kweon, Y.S.;Suh, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1676-1681
    • /
    • 2004
  • The main reason for applying positive pressure variable clearance packing in fossil power plant is high efficiency and energy saving movement in the government. This study intends to analyze the turbine efficiency through the shaft packing improvement in thermal power plant and makes its comparison to that of the each packing type

  • PDF

Study on the Clearance Design for Low Side Impacts of Engine Piston

  • Cho, Joon-Haeng;Jang, Si-Youl
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.427-428
    • /
    • 2002
  • Clearance movements of engine piston are regarded very important because they cause impact vibrations as well as many tribological problems. Some of the major parameters that influence these kinds of performances are piston profiles, piston offsets and clearance magnitudes. In our study. computational investigation is performed about the piston movements in the clearance between piston and cylinder liner by changing the skirt profiles and piston offsets. Our results show that curved profile and more offset to thrust side have better performance with low side impact during the engine cycle.

  • PDF

The Air Jet Effect of Sealing Performance Improvement on Labyrinth Seal (공기분사가 라비린스 시일의 성능개선에 미치는 영향)

  • 나병철;전경진;한동철
    • Tribology and Lubricants
    • /
    • v.12 no.4
    • /
    • pp.35-42
    • /
    • 1996
  • The labyrinth seal is one of the widely used non-contact type mechanical seal. Current work was emphasized on the investigation of the air jet effect on the labyrinth seal. To improve the sealing capability of conventional labyrinth seal, air jet was injected against through the leakage flow. In this study, both of the numerical analysis by CFD (Computational Fluid Dynamics) and the experimental measurement were carried out. Both of the turbulence aad the compressible flow model were introduced in CFD analysis. The sealing effect of the leakage clearance and the air jet magnitude were studied in the experiment. The reason of the enhanced sealing was explained as a reduction of effective clearance by jetting air. As a result, the air jet could reduce the effective clearance with a wide range of leakage clearance.

Investigation of Leakage Characteristics of Straight and Stepped Labyrinth Seals

  • Kim, Tong-Seop;Kang, Soo-Young
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.3
    • /
    • pp.253-259
    • /
    • 2010
  • Leakage characteristics of two labyrinth seals with different configurations (straight vs stepped) were investigated. Leakage flows were predicted by computational fluid dynamics (CFD) for the two configurations and compared with test data. A semi-analytical leakage prediction tool was also tried to predict the leakage. It was confirmed that the CFD gives quite good agreements with test data. The analytical tool also yielded similar leakage behaviors with test results, but the overall agreement with test data was not as good as that of the CFD. The effect of flow direction in the stepped seal on leakage flow was examined. The dependence of leakage performance, in terms of flow function, on the seal clearance size was investigated. Flow function decreased with decreasing clearance in the straight seal, while the trend was reversed in the stepped seal.

Effect of Vertical Clearance Between a Rotor and Stater of a Disk-Type Drag Pump on the Performance (원판형 드래그펌프 회전자와 고정자 사이의 간극이 성능에 미치는 영향)

  • Kwon, Myoung-Keun;Hwang, Young-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1501-1510
    • /
    • 2004
  • The pumping characteristics of a single-stage disk-type drag pump (DTDP) are calculated for the variation of the vertical clearance between a rotor and stator by the three-dimensional direct simulation Monte Carlo (DSMC) method. The gas flow mainly belongs to the molecular transition flow region. Spiral channels of a DTDP are cut on the both the upper and lower sides of a rotating disk, but a stationary disk is planar. The interaction between molecules is described by the variable hard-sphere model. The no time counter method is used as a collision sampling technique. The vertical clearance has a significant effect on the pumping performance. Experiments are performed under the outlet pressure range of 0.4∼533 Pa. When the numerical results are compared with the experimental data, the numerical results agree well quantitatively

A Study on the Optimum Shrink-fit for High Speed Ball Bearing of Machine Tool (공작기계용 고속 볼베어링의 최적 끼워맞춤에 관한 연구)

  • Kim, Woong;Lee, Choon-Man;Hwang, Young-Kug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.94-102
    • /
    • 2010
  • The spindle is the main component in machine tools. To develop high speed machine tools, a lot of studies have been carried out for high speed spindle. Bearing is very important part in spindle. The bearing clearance is influenced by shrink fit and thermal expansion during operation. The designer must take into account the reduction of shrink fits. The aims of this study are to grasp the shrink fits and behavior of a bearing which is a deeply connected with fatigue life of bearing and performance of spindle through FEM(Finite Element Method). This paper proposed optimum value of shrink fit considering deformation of spindle and stress of fitting area using design of experiments. Thus, the proposed formula can be used to obtain bearing internal clearance.