• Title/Summary/Keyword: Mechanical Characteristics

Search Result 15,656, Processing Time 0.046 seconds

A Study on the Grinding Characteristics of Stainless Steel Using Intermittent Grinding Wheel (단속 연삭지석에 의한 스테인레스강의 연삭특성에 관한 연구)

  • Kweun, O-Byung;Kim, Jeong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2866-2874
    • /
    • 1996
  • In the grinding of difficult-to-materials, the major problmes of conventional grinding are grinding burn, wheel wear, grinding surface crack, loading and glazing, When a conventioanl grinding wheel is used, wheel wear and grinding surface crack easily occur in low heat conductive material and annealed steel. Intermittent grinding is suitable for diffcult-to-matrical such as stainless steel, titanium alloy, aluminum alloy and copper alloy. The purpose of this paper is to develop a new type intermittent wheel of the grinding system for improving the problem of stainless steel grinding, to observe the effect of intermittent grinding on surface quality and grinding characteristics of stainless steel grinding using intermittent grinding wheel. The characteristics of intermittent grinding system improve surface quality, low grinding temperature and low loading.

Numerical Analysis of Thermal Characteristics of a Milling Process of Titanium Alloy Using Nanofluid Minimum-Quantity Lubrication (티타늄 합금의 나노유체 극미량 윤활 밀링 공정 열특성에 관한 수치 해석 연구)

  • Kim, Young Chang;Kim, Jin Woo;Kim, Jung Sub;Lee, Sang Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.253-258
    • /
    • 2017
  • This paper presents a numerical study on the thermal characteristics of a milling process of titanium alloy with nanofluid minimum-quantity lubrication (MQL). The computational fluid dynamics (CFD) approach is introduced for establishing the numerical model for the nanofluid MQL milling process, and estimated temperatures for pure MQL and for nanofluid MQL using both hexagonal boron nitride (hBN) and nanodiamond particles are compared with the temperatures measured by thermocouples in the titanium alloy workpiece. The estimated workpiece temperatures are similar to experimental ones, and the model is validated.

Formability Evaluation of Coated Steel Sheet and Uncoated Steel Sheet with Consideration of Friction Characteristics (마찰특성을 고려한 도금강판 및 무도금강판의 성형성 평가)

  • Lee K.S.;Lee J.M.;Kim B.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.251-252
    • /
    • 2006
  • Tensile and anisotropy test were performed to evaluate the mechanical properties of coated and uncoated steel. These results were used to predict the deference of formability between two sheets. Cup-drawing test was performed to verify formability of two sheets. Also, Cup-drawing test could predict the coefficient of friction and the forming limit. Finite Element Method of cup-drawing was performed to assess the deference between two sheets considering frictional characteristics. This result was compared with the former results.

  • PDF

Development of Waterproof Jacket Materials for Power Cables

  • Han, Yong-Huei;Jung, Jong-Wook;Kwon, Tae-Ho;Song, Hyun-Seok;Koo, Kyo-Sun;Han, Byung-Sung
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.4
    • /
    • pp.146-154
    • /
    • 2003
  • This paper describes various characteristics of the new compounds for cable jackets and model cables advanced in waterproof performance in order to essentially solve the problems of underground (URD) distribution class power cable failures. Several compounds were manufactured by the inclusion of additives to base resins available in Korea and tested for basic property, mechanical and electrical characteristics. Two model cables were created by using the compounds determined in the test as being the most appropriate for new structured model cable jacket material. The waterproof performance and mechanical strength of the new cable jackets were verified by applicable tests. As a result, MDPE and LLDPE compounds were superior as cable jackets in both mechanical and electrical characteristic aspects when compared with conventional PVC. In addition, the model cables composed of the new compounds based on MDPE showed good quality results in the water permeability test.

Breakup Characteristics of Laminar and Turbulent Liquid Sheets Formed by Impinging Jets in High Pressure Environments

  • Jung, K.;Khil, T.;Lim, B.;Yoon, Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.173-179
    • /
    • 2004
  • Breakup characteristics of liquid sheets formed by the impingement of two water jets, such as a breakup length and a breakup wavelength of sheet, were investigated as increasing the injection velocity up to 30m/s and the ambient gas pressure up to 4.0㎫. While round edged orifices formed a laminar sheet which has no waves on the sheet when the injection velocity is low, sharp edged orifices formed a turbulent sheet which has impact waves irrespective of the injection velocity. Thus we compared the differences of breakup characteristics between them. The results showed that the aerodynamic force significantly affects the breakup of laminar sheet when the gas based Weber number is higher than unity. It was also found that the turbulent sheets have three breakup regimes, i.e. expansion regime, wave breakup regime and catastrophic breakup regime according to the gas based Weber number.

  • PDF

DEPENDENCE OF RUBBER FRICTION UPON ITS ELASTIC CHARACTERISTICS

  • Nakamura, T.;Hanase, T.;Itoigawa, F.;Matsubara, T.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.187-188
    • /
    • 2002
  • Rubber has large differences in elastic characteristics from the other solid materials such as metals. Firstly, the rubber exhibits considerably large elastic compliance. Second is highly non-linear elasticity in which the compliance decreases with increase in strain. The main objective in this research is to reveal the dependence of rubber friction upon these elastic characteristics of the rubber in detail. A super elastic FEM analysis is carried out with using an elastic property of practical rubber. From the calculated result, it is cleared that the rubber makes large real contacting area easier than the metals.

  • PDF

Wave propagation analysis of carbon nanotubes reinforced composite plates

  • Mohammad Hosseini;Parisa Chahargonbadizade;Mohammadreza Mofidi
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.335-354
    • /
    • 2023
  • In this study, analysis of wave propagation characteristics for functionally graded carbon nanotube-reinforced composite (FG-CNTRC) nanoplates is performed using first-order shear deformation theory (FSDT) and nonlocal strain gradient theory. Uniform distribution (UD) and three types of functionally graded distributions of carbon nanotubes (CNTs) are assumed. The effective mechanical properties of the FG-CNTRC nanoplate are assumed to vary continuously in the thickness direction and are approximated based on the rule of mixture. Also, the governing equations of motion are derived via the extended Hamilton's principle. In numerical examples, the effects of nonlocal parameter, wavenumber, angle of wave propagation, volume fractions, and carbon nanotube distributions on the wave propagation characteristics of the FG-CNTRC nanoplate are studied. As represented in the results, it is clear that the internal length-scale parameter has a remarkable effect on the wave propagation characteristics resulting in significant changes in phase velocity and natural frequency. Furthermore, it is observed that the strain gradient theory yields a higher phase velocity and frequency compared to those obtained by the nonlocal strain gradient theory and classic theory.

Experimental Investigation of the Effect of Lead Errors on Helical Gear and Bearing Vibration Transmission Characteristics

  • Park, Chan-Il;Lee, Jang-Moo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1395-1403
    • /
    • 2002
  • The characteristics of gear meshing vibration undesgo change as the vibration is transmitted from the gear to the housing. Therefore, vibration transmission characteristics of helical gear systems must be understood before the effective methods of reducing gear noise can be found. In this work, using a helical gear with different lead errors, the gear vibration in the rotational direction and the bearing vibration are measured. The frequency characteristics of gear and bearing vibration are investigated and a comparson is also provided.

Evaluation of Mechanical Tearing based Cell Disruption Capability to Shape Nanostructures formed on Nanoporous Alumina Filter (다공성 알루미나 필터 표면에 형성된 나노구조물의 형상에 따른 찢어짐에 의한 세포파쇄 특성 평가)

  • Lee, Yong-Hun;Han, Eui-Don;Kim, Byeong-Hee;Seo, Young-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • This study investigated the mechanical tearing of a cell membrane using a nanostructured alumina filter for easy and quick mechanical cell disruption. Nanostructured alumina filters were prepared by a multi-step aluminum anodizing process and nanopore etching process. Six different types of nanostructures were formed on the surface of the nanoporous alumina filters to compare the mechanical cell disruption characteristics according to the shape of the nanostructure. The prepared alumina filter was assembled in a commercial filter holder, and then, NIH3T3 fibroblast cells in a buffer solution were passed through the nanostructured alumina filter at a constant pressure. By measuring the concentration of proteins and DNA, the characteristics of mechanical cell disruption of the nanostructured alumina filter were investigated.

Modeling and Analysis of a Novel Two-Axis Rotary Electromagnetic Actuator for Fast Steering Mirror

  • Long, Yongjun;Wang, Chunlei;Dai, Xin;Wei, Xiaohui;Wang, Shigang
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.130-139
    • /
    • 2014
  • This paper focuses on the modeling and analysis a novel two-axis rotary normal-stress electromagnetic actuator with compact structure for fast steering mirror (FSM). The actuator has high force density similar to a solenoid, but its torque output is nearly a linear function of both its driving current and rotation angle, showing that the actuator is ideal for FSM. In addition, the actuator is designed with a new cross topology armature and no additional axial force is generated when the actuator works. With flux leakage being involved in the actuator modeling properly, an accurate analytical model of the actuator, which shows the actuator's linear characteristics, is obtained via the commonly used equivalent magnetic circuit method. Finally, numerical simulation is presented to validate the analytical actuator model. It is shown that the analytical results are in a good agreement with the simulation results.