• Title/Summary/Keyword: Mechanical

Search Result 76,484, Processing Time 0.076 seconds

Analytical Solution of Magnetic Field in Permanent-Magnet Eddy-Current Couplings by Considering the Effects of Slots and Iron-Core Protrusions

  • Dai, Xin;Liang, Qinghua;Ren, Chao;Cao, Jiayong;Mo, Jinqiu;Wang, Shigang
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.273-283
    • /
    • 2015
  • In this study, we propose an analytical model for studying magnetic fields in radial-flux permanent-magnet eddy-current couplings by considering the effects of slots and iron-core protrusions on the eddy currents. We focus on the analytical prediction of the air-gap field by considering the influence of eddy currents induced in conducting bars. In the proposed model, the permanent magnet region is treated as the source of a time-varying magnetic field and the moving-conductor eddy current problem is solved based on the resolution of time-harmonic Helmholtz equations. The spatial harmonics in the air gap and in slots, as well as the time harmonics are all considered in the analytical calculation. Based on the proposed field model, the electromagnetic torque is computed by using the Maxwell stress tensor method. Nonlinear finite element analysis is performed to validate the analytical model. The proposed model can be used for permanent-magnet eddy-current couplings with any slot-pole combination.

Thermal-mechanical Fatigue Life Prediction of 12Cr Forged Steel Using Strain Range Partitioning method (변형률분할법에 의한 12Cr 단조강의 열피로 수명예측)

  • 하정수;옹장우;고승기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1192-1202
    • /
    • 1994
  • Fatigue behavior and life prediction were presented for thermal-mechanical and isothermal low cycle fatigue of 12Cr forged steel used for high temperature applications. In-phase and out-of-phase thermal-mechanical fatigue test at 350 to 600.deg. C and isothermal low cycle fatigue test at 600.deg. C were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. Cyclic softening behavior was observed regardless of thermal-mechanical and isothermal fatigue tests. The phase difference between temperature and strain in thermal-mechanical fatigue resulted in significantly shorter fatigue life for out-of-phase than for in-phase. The difference in fatigue lives was dependent upon the magnitudes of inelastic strain ranges and mean stresses. Increase in inelastic strain range showed a tendency of intergranular cracking and decrease in fatigue life, especially for out-of-phase thermal-mechanical fatigue. Thermal-mechanical fatigue life prediction was made by partitioning the strain ranges of the hysteresis loops and the results of isothermal low cycle fatigue tests which were performed under the combination of slow and fast strain rates. Predicted fatigue lives for out-of-phase using the strain range partitioning method showed an excellent agreement with the actual out-of-phase thermal-mechanical fatigue lives within a factor of 1.5. Conventional strain range partitioning method exhibited a poor accuracy in the prediction of in-phase thermal-mechanical fatigue lives, which was quite improved conservatively by a proposed strain range partitioning method.

Tribological Properties of Chemical Vapor Deposited Graphene Coating Layer (화학기상증착법에 의하여 제조된 그래핀 성장층의 기계적 마모 특성)

  • Lee, Jong Hoon;Kim, Sun Hye;Cho, Doo Ho;Kim, Se Chang;Baek, Seung Guk;Lee, Jong Gu;Kang, Junmo;Choi, Jae-Boong;Seok, Chang Sung;Kim, Moon Ki;Koo, Ja Choon;Lim, Byeong Soo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.206-211
    • /
    • 2012
  • Graphene has recently received high attention as a promising material for various applications, and many related studies have been undertaken to reveal its basic mechanical properties. However, the tribological properties of graphene film fabricated by the chemical vapor deposition (CVD) method are barely known. In this study, the contact angle and frictional wear characteristics of graphene coated copper film were investigated under room temperature, normal air pressure, and no lubrication condition. The contact angle was measured by sessile drop method and the wear test was carried out under normal loads of 660 mN and 2940 mN, respectively. The tribological behaviors of a graphene coating layer were also examined. Compared to heat treated bare copper foil, the graphene coated one shows a higher contact angle and lower friction coefficient.

Design and Manufacturing of Mechanical Metamaterials: A Review (기계적 메타물질 설계 및 제조방안)

  • Kim, Min-Kyeom;Kim, Seunghyun;Yun, Jae-Won;Jeong, Hyo Gyun;Kwak, Min-Jun;Ahn, Yea-Lin;Park, Chan-Wook;Kim, Youn-Chul;Suhr, Jonghwan
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.199-211
    • /
    • 2021
  • As an additive manufacturing achieves technological advances, it enables to manufacture complex structures with saving a cost and time. Therefore, metamaterials, which has geometric complexity, have gradually gathered attention due to the unprecedented properties: the unprecedented mechanical, thermal, electromagnetic, and optical properties. The metamaterials could exhibit a high potential in engineering applications, and thus it has been steadily investigated to design or/and develop novel metamaterials. Here, mechanical metamaterials, which had been reported, were reviewed to suggest the way to design and fabricate the metamaterials for industrial applications.

Effect of Post-processing on Mechanical Properties of 3D Printed Carbon Chopped Fiber Reinforced Composites (3D 프린팅 된 탄소 단섬유강화 복합재료의 후처리 효과가 재료의 기계적 성능에 미치는 영향)

  • Jia-le, Che;Seung-Hwan, Chang
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.463-468
    • /
    • 2022
  • The high porosity of the infill pattern of carbon chopped fiber-reinforced Nylon composite structures fabricated by the fused filament fabrication (FFF) type 3D printers determines the mechanical performance of the printed structures. This study experimentally evaluated the mechanical performance of Onyx composite specimens fabricated with a rectangular infill structure under the hot-pressing condition to improve the mechanical properties by reducing the porosity of the infill pattern of the printed structure, and evaluated the best mechanical performance. The hot-pressing conditions (145℃, 4 MPa, 12 min) that induce the most appropriate mechanical properties were found. As a result of microscopic observation, it was confirmed that the infill porosity of the composite specimens subjected to post hot-pressing treatment was effectively reduced. In order to confirm the mechanical performance of the post-treated specimen, a tensile test and a three-point bending test were performed with a control specimen without post-treatment and a specimen printed with the same density and dimensions after post-treatment to evaluate the mechanical properties. As a result of comparison, it was confirmed that the mechanical properties were effectively improved when the post-treatment of hot-pressing was performed.

A Basic Study on Comparative Analysis of the Characteristics and Performance of Different Types of Mechanical Rebar Coupler for Sustainable Built Environment

  • Jeeyoung LIM;Ayomi Dita Rarasati;Sunkuk KIM
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.10-17
    • /
    • 2024
  • Rebar lap splice is the most commonly used at construction sites because it does not require any additional equipment or labor's skills. Rebar lap splice has high construction costs because they require approximately 15% more rebar due to the overlap length. To solve these problems of rebar lap splice, mechanical rebar coupler was developed. Mechanical rebar coupler has a strong bonding force, helping to keep the structure safe even during earthquakes. In addition, mechanical rebar coupler is suitable for modular construction and easy to construct, so the construction period can be shortened. And mechanical rebar coupler can reduce the amount of rebar compared to other joint methods, thereby reducing CO2 emissions. Despite these advantages, the use of mechanical rebar couplers is not widespread except in some developed countries. This is because the types and characteristics of mechanical rebar couplers vary widely, making it difficult for construction engineers to choose. Existing research has only been conducted on mechanical rebar couplers in terms of structural experiments. And there is no research that classifies and analyzes the shapes of rebars. Hence, it should be analyzed the characteristics of mechanical rebar couplers in terms of construction methods for each shape. Therefore, the objective of this study is a basic study on comparative analysis of the characteristics and performance of different types of mechanical rebar coupler for sustainable built environment. The most efficient mechanical rebar coupler was derived for each construction site environment.

THE EFFICACY OF CHEMO-MECHANICAL REMOVAL OF DENTIN CAR10US LESION (치아 우식부의 기계화학적 제거 효과에 대한 연구)

  • Lim, Soon-Bin;Choi, Kyung-Kyu;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.3
    • /
    • pp.149-157
    • /
    • 2005
  • Mechanical removals in decayed teeth have been performed using drill and sharp hand instruments. These methods have some disadvantages such as pain, local anesthesia and overextended cavities Therefore chemo-mechanical excavation of dentin carious lesions has been introduced. The purpose of this study was to evaluate the efficacy of traditional mechanical methods using burs and chemo-mechanical methods (Carisolv) of caries dentin. Mechanical caries removal was carried with low speed round bur Chemo-mechanical caries excavation was performed with Carisolv (Medi-team), using the Carisolv hand instruments. The mean time to remove caries with two different methods was evaluated and the data analyzed with SPSS software (ver 11.5) by t-test (p < 0.05). For histomorphometry of caries removal were also carried with mechanical or chemo-mechanical (Carisolv) methods from 20 extracted caries permanent molars. Complete caries removal was verified with a $\#$23 sharp explorers, Caries Detector (Kuraray Co. Japan), and standard apical radiography. 1. Chemo-mechanical method was taken more times than mechanical method (1.5 fold) (p < 0.05) 2. Excavation for caries took more time for molar lesion than premolar lesion, and the least time was taken to remove the caries in incisor lesion (p < 0.05). 3. There were no significant differences to remove the caries between the maxilla and mandible (p > 0.05). 4. The remaining carious dentin was detected after the ckemo-mechanical removal of the carious dentin, and no smear layer were seen after the mechanical and chemo-mechanical removal of the carious dentin.

Development of Education and Training Programs and Job Analysis on 'Mechanical Facilities Maintenance Manager' Using DACUM (DACUM을 활용한 기계설비유지관리자 직무분석 및 교육훈련 프로그램 개발)

  • Oh, Chun Shik;Cho, Jeong Yoon;Jeong, Yousung;Song, Nakhyun
    • 대한공업교육학회지
    • /
    • v.44 no.2
    • /
    • pp.86-103
    • /
    • 2019
  • The purpose of this study is to provide basic data on the development of education and training programs for training 'mechanical facilities maintenance manager'. To this end, the DACUM technique was used for job analysis and education and training programs were developed through expert consultation meetings. The job analysis was based on the 10-member DACUM Committee to derive the job definition, job model, job description, and task description of the 'mechanical facilities maintenance manager'. The main findings are as follows. First, the 'mechanical facilities maintenance manager' was defined as those who operate, inspect, diagnose, and repair mechanical facilities to provide the best performance and efficient operation management, provide a safe and pleasant environment, and perform energy saving and facility life extension tasks. Second, the duties of the 'mechanical facilities maintenance manager' analyzed in the job model consist of the comprehensive plan for operation of mechanical facilities, energy management of mechanical facilities, operation management of mechanical facilities, maintenance of mechanical facilities, safety environment management of mechanical facilities, and customer support management of mechanical facilities. Considering the nature and content of the duties, 4 to 11 tasks per duty were derived and a total of 33 tasks were presented as job model. Third, the curriculum for the 'mechanical facilities maintenance manager' was set up in two courses: Practice I for Mechanical Facilities Maintenance and Practice II for Mechanical Facilities Maintenance. Considerations and policy suggestions were presented when applying and implementing education and training programs based on the results of the research.

Silicon/Pad Pressure Measurements During Chemical Mechanical Polishing

  • Danyluk, Steven;Ng, Gary;Yoon, In-Ho;Higgs, Fred;Zhou, Chun-Hong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.433-434
    • /
    • 2002
  • Chemical mechanical polishing refers to a process by which silicon and partially-processed integrated circuits (IC's) built on silicon substrates are polished to produce planar surfaces for the continued manufacturing of IC's. Chemical mechanical polishing is done by pressing the silicon wafer, face down, onto a rotating platen that is covered by a rough polyurethane pad. During rotation, the pad is flooded with a slurry that contains nanoscale particles. The pad deforms and the roughness of the surface entrains the slurry into the interface. The asperities contact the wafer and the surface is polished in a three-body abrasion process. The contact of the wafer with the 'soft' pad produces a unique elastohydrodynamic situation in which a suction force is imposed at the interface. This added force is non-uniform and can be on the order of the applied pressure on the wafer. We have measured the magnitude and spatial distribution of this suction force. This force will be described within the context of a model of the sliding of hard surfaces on soft substrates.

  • PDF

An Experimental Setup for Measuring the Performance of Blood Pumps (혈액펌프 성능평가를 위한 실험장치 구성)

  • Kim, Sung-Gil;Hong, Seokbin;Kim, Taehong;Kim, Wonjung;Kang, Seongwon;Kang, Shin-Hyoung;Hur, Nahmkeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.55-60
    • /
    • 2016
  • We present an experimental setup for measuring the mechanical performance of centrifugal blood pumps. Using a 3D printer to construct supporting parts and magnetic couplings, we developed the measurement setup that can be used for various types of blood pumps. The experimental setup is equipped with sensors to measure a variety of mechanical characteristics of blood pumps including pressure, flow rate, torque, temperature, and rotating speed. Our experimental measurements for two commercial blood pumps are consistent with data provided by manufacturers, which indicates that the our setup offers the accurate measurements of blood pump performance. Utilizing the experimental setup, we tested aqueous glycerin solutions mimicking the density and viscosity of blood, which enabled us to predict the difference in operations using water and blood.