• Title/Summary/Keyword: Measuring Space

Search Result 855, Processing Time 0.026 seconds

Field-Induced Translation of Single Ferromagnetic and Ferrimagnetic Grain as Observed in the Chamber-type μG System

  • Kuwada, Kento;Uyeda, Chiaki;Hisayoshi, Keiji;Nagai, Hideaki;Mamiya, Mikito
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.308-310
    • /
    • 2013
  • Translation induced by the field-gradient force is being observed for a single ferromagnetic iron grain and a ferrimagnetic grain of a ferrite sample ($CuFe_2O_4$). From measurements on the translation, precise saturated magnetization of $M_S$ is possible for a single grain. The method is based on the energy conservation rule assumed for the grain during its translation and the grain is translated through a diffuse area under microgravity conditions. The results of the two materials indicate that a field-induced translation of grain bearing spontaneous moment is generally determined by a field-induced potential $-mM_SH(x)$ where m denotes the mass of sample. According to the above translations, the detection of $M_S$ is not interfered by any signals from the sample holder. The $M_S$ measurement does not require m value. By observing translations resulting from fieldinduced volume forces, the magnetization of a single grain is measurable irrespective of its size; the principle is also applicable to measuring susceptibility of diamagnetic and paramagnetic materials.

Thermal Environment Around the Outdoor Unit Installed in the Space between Buildings in the Commercial Area (상업지역내 건물 사이 공간에 설치된 실외기 주변 열 환경 분석)

  • Shin, Hak-Jong;Kwak, In-Kyu;Mun, Sun-Hye;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.3
    • /
    • pp.19-27
    • /
    • 2019
  • In commercial areas, outdoor units are typically installed close to one another in the narrow space between buildings due to insufficient regulations. This makes it difficult to ventilate the discharge airflow, which may lead to deterioration of the performance of outdoor units. This study conducted CFD simulation to analyze the thermal environment according to the installation distance of the outdoor unit. The outdoor unit was installed in the space between buildings, and the thermal environment was analyzed by changing installation distance and wind speed. The performance of the outdoor unit was evaluated by measuring the on-coil temperature. The results show that the closer the distance between outdoor units, the higher the condenser on-coil temperature. Also, the on-coil temperature appeared to rise dramatically at lower wind speed.

Validity and Reliability of Ultrasound Measurement of Knee Joint Space Width in Individuals With Knee Osteoarthritis

  • Kim, Geon;Cha, Young-joo;Shin, Ji-won;You, Sung-hyun
    • Physical Therapy Korea
    • /
    • v.26 no.1
    • /
    • pp.60-66
    • /
    • 2019
  • Background: Knee osteoarthritis (OA) is a single most arthritic disease. Knee joint space width (JSW) is commonly used for grading severity of knee OA. However, previous studies did not established criterion validity and test-retest reliability of ultrasound (US) image for measuring JSW. Objects: The aim of this study was to establish criterion validity and test-retest reliability of US measurement of medial and lateral knee JSW. Methods: Twenty-nine subjects with knee OA were participated. The US and X-ray were used to measure knee JSW. One sample Kolmogorov-Smirnov test was used to confirm the data normal distribution. Pearson correlation coefficient and ICC were used to calculated and establish criterion validity and test-retest reliability, respectively. Results: US measurement of medial and lateral knee JSW was highly correlated with radiographic imaging measure (r=.714 and .704, respectively). Test-retest reliabilities of medial and lateral knee JSW were excellent correlated (ICC=.959 for medial side and .988 for lateral side, respectively). Conclusion: US may be valid tool to measure knee JSW.

A Study on Satellite Alignment Measurements Accuracy Improvement (인공위성 정렬 측정 정확도 향상을 위한 연구)

  • Choi, Jung Su;Kim, In-Gul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.987-995
    • /
    • 2020
  • Accurate alignment between high-performance payloads and attitude control sensors is essential factor to guarantee accurate attitude orientation and high pointing stability of the satellite. Space craft developers often use theodolite measurement system for satellite alignment during ground AIT(Assembly Integration and Test) phase. When measuring theodolite, errors may occur due to line of sight error, tilting axis error, vertical index error, and vertical axis error. In addition, errors that can occur during alignment measurements with multiple theodolites are analyzed through the alignment cube measurements test. Based on the alignment cube measurements test, a technical method that can improve the alignment measurement accuracy was suggested and it's measurements results satisfied the satellite design requirements.

Thermal Strain Measurement of Austin Stainless Steel (SS304) during a Heating-cooling Process

  • Ha, Ngoc San;Le, Vinh Tung;Goo, Nam Seo;Kim, Jae Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.206-214
    • /
    • 2017
  • In this study, measurement of thermophysical properties of materials at high temperatures was performed. This experiment employed a heater device to heat the material to a high temperature. The images of the specimen surface due to thermal load at various temperatures were recorded using charge-coupled device (CCD) cameras. Afterwards, the full-field thermal deformation of the specimen was determined using the digital image correlation (DIC) method. The capability and accuracy of the proposed technique are verified by two experiments: (1) thermal deformation and strain measurement of a stainless steel specimen that was heated to $590^{\circ}C$ and (2) thermal expansion and thermal contraction measurements of specimen in the process of heating and cooling. This research focused on two goals: first, obtaining the temperature dependence of the coefficient of thermal expansion, which can be used as data input for finite element simulation; and second, investigating the capability of the DIC method in measuring full-field thermal deformation and strain. The results of the measured coefficient of thermal expansion were close to the values available in the handbook. The measurement results were in good agreement with finite element method simulation results. The results reveal that DIC is an effective and accurate technique for measuring full-field high-temperature thermal strain in engineering fields such as aerospace engineering.

Pleural Effusion and Pancreatico-Pleural Fistula Associated with Asymptomatic Pancreatic Disease (췌장염 증상없이 췌장-흉막루를 통해 발생한 흉막저류)

  • Park, Sang-Myun;Lee, Sang-Hwa;Lee, Jin-Goo;Cho, Jae-Youn;Shim, Jae-Jeong;In, Kwang-Ho;Kang, Kyung-Ho;Yoo, Se-Hwa
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.2
    • /
    • pp.226-230
    • /
    • 1995
  • Effusions arising from acute pancreatitis are usually small, left sided and self limiting. The incidence of pleural effusions in acute pancreatitis is reported between 3% and 17%. In chronic pancreatitis, as a consequence of fistula and pancreatitic pseudocyst formation or by spontaneous rupture of a pancreatic psudocyst directly into thoracic cavity, extremely large effusions may be seen. When the underlying pacreatic disease is asymptomatic, the diagnosis is made by measuring the amylase content of the pleural fluid. We experience a case of left sided pleural effusions caused by pancreatico-pleural fistula associated with pancreatic pseudocyst. The diagnosis was made by measuring of pleural fluid amylase level(80000U/L). Abdominal CT scan revealed pancreatic pseudocyct and pancreatitis with extension to left pleural space through esophageal hiatus and extension to left subdiaphragmatic space. Left pleural effusions were decreased after fasting, total parenteral nutrition and percutaneous pleural fluid catheter drainage. We reported a case of pleural effusions and pacreatico-pleural fistula asssociated with asymptomatic pancreatic disease with review of literatures.

  • PDF

Development of Lightweight Piezo-composite Curved Actuator (곡면형 압전 복합재료 작동기 LIPCA 개발)

  • Park, Ki-Hoon;Yoon, Kwang-Joon;Park, Hoon-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.94-100
    • /
    • 2002
  • This paper is concerned with the development, and performance test of LIPCA (Lightweight Piezo-composite Curved Actuator) that is lighter than other conventional piezo-composite type actuators. LIPCA is composed of top fiber composite layers with a high modulus and low CTE (Coefficient of Thermal Expansion), a middle PZT cermaic wafer, and base layers with a high modulus and high CTE. The performance of each actuator was evaluated using an actuator test system consisting of an actuator supporting jig, a high voltage actuating power supplier, and a non-contact laser measuring system. The simply supported condition actuator was excited by the power supplier with 1.0Hz cycle and up to $100\sim400V_{pp}$. The displacement at the center point of actuator was measured with non-contact laser displacement measuring system, It has been shown that the LIPCA-C2 can 34% decrease in mass and 13% increase in displacement compared to THUNDER.

Study of On-line Performance Diagnostic Program of A Helicopter Turboshaft Engine (헬리콥터 터보축 엔진의 온라인 상태진단 프로그램 연구)

  • Kong, Chang-Duk;Koo, Young-Ju;Kho, Seong-Hee;Ryu, Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1238-1244
    • /
    • 2009
  • This work proposes a GUI-type on-line diagnostic program using SIMULINK and Fuzzy-Neuro algorithms for a helicopter turboshaft engine. During development of the diagnostic program, a look-up table type base performance module for reducing computer calculating time and a signal generation module for simulating real time performance data are used. This program is composed of the on-line condition monitoring program to monitor on-line measuring performance condition, the fuzzy inference system to isolate the faults from measuring data and the neural network to quantify the isolated faults. The reliability and capability of the proposed on-line diagnostic program were confirmed through application to the helicopter engine health monitoring.

An Importance Analysis of Planning Factors for Constructing Environmental-Friendly Industrial Estate (환경친화적 산업단지 조성을 위한 계획요소의 중요도 분석)

  • Lee, Eun Yeob;Kim, Jung Kon;Lee, Hyun Ju
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.4
    • /
    • pp.1-11
    • /
    • 2012
  • This study prepared the list of planning components required for constructing environment-friendly industrial complex and grasped major environment-friendly planning components by measuring the importance per each planning component via the survey for specialists. As a result of measuring the importance of planning component according to each field for constructing environment-friendly industrial complex, it is indicated that important planning components in natural environment field are establishing complex location plan considering its configuration and slope, excluding projects for steep slope-land, establishing countermeasures for reducing contaminants per its source, and separated location of contamination industry around living space. In living environment field, proposed planning components having relatively high importance are separated location of pollution causing industry, establishing energy saving land use plan, linking with green way, circulation network plan, lowering noise level at roadside, plan for separating between pedestrian and vehicle, securing parking space, extending green park and proper location, installing green buffer zone, conserving and forming landscapes, land use for raising energy efficiency, and expansion of energy source. In case of ecological environment, core planning components such as conserving upper class of ecological naturality degree, conserving main habitat, and biotope forming plan are suggested. This study is limited to find out planning components for constructing environment-friendly physical environment of industrial complex which is a part of non-production process. The approach to solve environmental problem by linking spatially production process and non-production process. There is a need to conduct follow-up study to constructing technique for environment-friendly industrial complex considering production & nonproduction process afterward.

FPGA based HW/SW co-design for vision based real-time position measurement of an UAV

  • Kim, Young Sik;Kim, Jeong Ho;Han, Dong In;Lee, Mi Hyun;Park, Ji Hoon;Lee, Dae Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.232-239
    • /
    • 2016
  • Recently, in order to increase the efficiency and mission success rate of UAVs (Unmanned Aerial Vehicles), the necessity for formation flights is increased. In general, GPS (Global Positioning System) is used to obtain the relative position of leader with respect to follower in formation flight. However, it can't be utilized in environment where GPS jamming may occur or communication is impossible. Therefore, in this study, monocular vision is used for measuring relative position. General PC-based vision processing systems has larger size than embedded systems and is hard to install on small vehicles. Thus FPGA-based processing board is used to make our system small and compact. The processing system is divided into two blocks, PL(Programmable Logic) and PS(Processing system). PL is consisted of many parallel logic arrays and it can handle large amount of data fast, and it is designed in hardware-wise. PS is consisted of conventional processing unit like ARM processor in hardware-wise and sequential processing algorithm is installed on it. Consequentially HW/SW co-designed FPGA system is used for processing input images and measuring a relative 3D position of the leader, and this system showed RMSE accuracy of 0.42 cm ~ 0.51 cm.