• Title/Summary/Keyword: Measurement-based Model

Search Result 2,542, Processing Time 0.039 seconds

A design concept on object database of measurement data for building a safety management network of road bridges (도로 교량의 안전관리 네트워크 구축을 위한 계측자료의 객체 데이터베이스 설계 개념)

  • Park, Sang-Il;An, Hyun-Jung;Kim, Hoy-Jin;Lee, Sang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.518-523
    • /
    • 2008
  • In this study, we analyzed applicability of object database, designed the concept model based on object-oriented idea for measurement data management, and applied the design model to object database. The concept model composes three sub models Infrastructure managing information model, Infrastructure measurement data model, and Measurement unit model. The process to expand measurement data of new type was executed easily without changing database schema in object database. The process to expand measurement data of new type was executed easily without changing database schema in object database. Therefore, applicability of new technology to infrastructures for building a safety management network of road bridges could be increased with object database system.

  • PDF

Evaluation on bridge dynamic properties and VIV performance based on wind tunnel test and field measurement

  • Yang, Yongxin;Ma, Tingting;Ge, Yaojun
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.719-737
    • /
    • 2015
  • Full scale measurement on the structural dynamic characteristics and Vortex-induced Vibrations (VIV) of a long-span suspension bridge with a central span of 1650 m were conducted. Different Finite Element (FE) modeling principles for the separated twin-box girder were compared and evaluated with the field vibration test results, and the double-spine model was determined to be the best simulation model, but certain modification still needs to be made which will affect the basic modeling parameters and the dynamic response prediction values of corresponding wind tunnel tests. Based on the FE modal analysis results, small-scaled and large-scaled sectional model tests were both carried out to investigate the VIV responses, and probable Reynolds Number effects or scale effect on VIV responses were presented. Based on the observed VIV modes in the field measurement, the VIV results obtained from sectional model tests were converted into those of the three-dimensional (3D) full-scale bridge and subsequently compared with field measurement results. It is indicated that the large-scaled sectional model test can probably provide a reasonable and effective prediction on VIV response.

Software Reliability of Safety Critical FPGA-based System using System Engineering Approach

  • Pradana, Satrio;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.49-57
    • /
    • 2018
  • The main objective of this paper is come up with methodology approach for FPGA-based system in verification and validation lifecycle regarding software reliability using system engineering approach. The steps of both reverse engineering and re-engineering are carried out to implement an FPGA-based of safety critical system in Nuclear Power Plant. The reverse engineering methodology is applied to elicit the requirements of the system as well as gain understanding of the current life cycle and V&V activities of FPGA based-system. The re-engineering method is carried out to get a new methodology approach of software reliability, particularly Software Reliability Growth Model. For measure the software reliability of a given FPGA-based system, the following steps are executed as; requirements definition and measurement, evaluation of candidate reliability model, and the validation of the selected system. As conclusion, a new methodology approach for software reliability measurement using software reliability growth model is developed.

A Study On Measurement-based Load Modeling Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 측정기반의 부하모델링 연구)

  • Lee, Kyung-Sang;Park, Rae-Jun;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1079-1085
    • /
    • 2011
  • To supply electrical power with high quality, the power system must be optimized in many ways such as planning, control and management. In order to optimize the power system, the analysis of the power system is necessary. The elements of the power system require an accurate model to analysis of the power system. The components of the power systems such as generators, transformers and transmission lines have been studied and researched a lot in their modeling and very sophisticated models have been proposed. However, in case of load in-depth studies on the exact model are required. In this paper, measurement-based load modeling method using real-time measured data is proposed in various methods to reflect the characteristics of the load. To prove the validity of the proposed method, PSCAD/EMTDC program is used to configure the power system and measurement data according to the various failures are used to study on load modeling.

Comparative Study on Proposed Simulation Based Optimization Methods for Dynamic Load Model Parameter Estimation (동적 부하모델 파라미터 추정을 위한 시뮬레이션 기반 최적화 기법 비교 연구)

  • Del Castillo, Manuelito Jr.;Song, Hwa-Chang;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.187-188
    • /
    • 2011
  • This paper proposes the hybrid Complex-PSO algorithm based on the complex search method and particle swarm optimization (PSO) for unconstrained optimization. This hybridization intends to produce faster and more accurate convergence to the optimum value. These hybrid will concentrate on determining the dynamic load model parameters, the ZIP model and induction motor model parameters. Measurement-based parameter estimation, which employs measurement data to derive load model parameters, is used. The theoretical foundation of the measurement-based approach is system identification. The main objective of this paper is to demonstrate how the standard particle swarm optimization and complex method can be improved through hybridization of the two methods and the results will be compared with that of their original forms.

  • PDF

Precise Edge Detection Method Using Sigmoid Function in Blurry and Noisy Image for TFT-LCD 2D Critical Dimension Measurement

  • Lee, Seung Woo;Lee, Sin Yong;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.69-78
    • /
    • 2018
  • This paper presents a precise edge detection algorithm for the critical dimension (CD) measurement of a Thin-Film Transistor Liquid-Crystal Display (TFT-LCD) pattern. The sigmoid surface function is proposed to model the blurred step edge. This model can simultaneously find the position and geometry of the edge precisely. The nonlinear least squares fitting method (Levenberg-Marquardt method) is used to model the image intensity distribution into the proposed sigmoid blurred edge model. The suggested algorithm is verified by comparing the CD measurement repeatability from high-magnified blurry and noisy TFT-LCD images with those from the previous Laplacian of Gaussian (LoG) based sub-pixel edge detection algorithm and error function fitting method. The proposed fitting-based edge detection algorithm produces more precise results than the previous method. The suggested algorithm can be applied to in-line precision CD measurement for high-resolution display devices.

Semiparametric Bayesian Estimation under Structural Measurement Error Model

  • Hwang, Jin-Seub;Kim, Dal-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.4
    • /
    • pp.551-560
    • /
    • 2010
  • This paper considers a Bayesian approach to modeling a flexible regression function under structural measurement error model. The regression function is modeled based on semiparametric regression with penalized splines. Model fitting and parameter estimation are carried out in a hierarchical Bayesian framework using Markov chain Monte Carlo methodology. Their performances are compared with those of the estimators under structural measurement error model without a semiparametric component.

Semiparametric Bayesian estimation under functional measurement error model

  • Hwang, Jin-Seub;Kim, Dal-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.2
    • /
    • pp.379-385
    • /
    • 2010
  • This paper considers Bayesian approach to modeling a flexible regression function under functional measurement error model. The regression function is modeled based on semiparametric regression with penalized splines. Model fitting and parameter estimation are carried out in a hierarchical Bayesian framework using Markov chain Monte Carlo methodology. Their performances are compared with those of the estimators under functional measurement error model without semiparametric component.

A multi-item measurement scale of healthcare service quality: an evaluation indicators of healthcare certification (의료서비스 품질 측정 요인: 의료서비스 인증 평가지표를 중심으로)

  • Choe, Byung-Don;Lee, Don-Hee;Yoon, Sung-Dae
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.3
    • /
    • pp.381-393
    • /
    • 2012
  • Purpose: Considering various measurements for healthcare service quality, the purpose of this study is to examine measurement items for healthcare service quality (HCSQ) based on previous study and service quality evaluation institutions in the international community. Methods: The proposed research model was tested using measurement analysis, based on data collected from 387 respondents in the selected hospital with more than 500 beds in South Korea. Results: The results of the study shed insights about the relative importance of quality items as degree of improvements of care services tangible, safety, efficiency, and empathy. Also, the study provides new measurement model for healthcare service quality. Conclusion: Healthcare organization thrives to find the key factors for improving quality of care and service that meet customers' needs and expectations.

Unsteady Flow Rate Measurement Based on Distributed Parameter Pipeline Model (분포정수계 관로모델을 이용한 비정상 유량계측)

  • Kim, Do-Tae;Hong, Sung-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.8-13
    • /
    • 2008
  • The paper proposes a model-based measurement of unsteady flow rate by using distributed parameter pipeline model and the measured pressure values at two distant points along the pipeline. The distributed parameter model of hydraulic pipeline is applied with consideration of frequency dependent viscosity friction and unsteady velocity distribution at a cross section of a pipeline. By using the self-diagnostics functions of the measurement method, the validity is investigated by comparison with the measured and estimated pressure and flow rate wave forms at the halfway section on the pipeline. The results show good agreement between the estimated flow rate wave forms and theoretical those under unsteady laminar flow conditions. The method proposed here is useful in estimating unsteady flow rate through an arbitrary cross section in hydraulic pipeline and components without installing an instantaneous flowmeter.