• Title/Summary/Keyword: Measurement results

Search Result 19,341, Processing Time 0.046 seconds

Development of an Embedded Foot Pressure Measurement System Using Time Division Measurement Method (시분할 측정기법을 이용한 임베디드 족압 측정 시스템 설계)

  • 김시경
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1022-1027
    • /
    • 2004
  • In this paper, an embedded foot pressure measurement system is proposed to measure foot pressure based on the embedded Linux system. To measure foot pressure data and to evaluate foot pressure distribution for the different insoles, FSR sensor, A/D converter, iPAQ PDA, and a time division measurement method are employed in the system. Utilizing this system, the foot pressure analysis has been performed for the different four shoes. The number of foot pressure/voltage conversion circuits are drastically decreased by the proposed time division measurement method from 406 to 14. The experimental results for the sandal, slipper, oxford shoes and sneakers demonstrate that the proposed system successfully performs the foot pressure measurement.

Strategies Used by Young Children in Weight Measurement Tasks ($4{\sim}6$세 유아의 무게 측정전략 발달에 관한 연구)

  • Rhee, Bo-Young;Kim, Ju-Young
    • Journal of the Korean Home Economics Association
    • /
    • v.45 no.7
    • /
    • pp.49-60
    • /
    • 2007
  • The purpose of this study was to analyze the weight measurement tasks according to children's ages and whether 4-to 6-year-old children use proper measurement equipment to measure weight. The study subjects were 105 preschool children: 37,38, and 30 4-, 5-, and 6-year-old children, respectively. The results showed that young children use 3 to 4 strategies. They used a strategy to estimate objects visually on the first step in measurement by direct comparison. On the second step, in measurement by nonstandard unit, they held up objects with one hand or two hands. That is, two strategies were shown in measuring objects with hands in this second step. On the third step, which is measured by standard unit, they used a strategy to choose the equal arm balance out of suggested measurement equipment.

A Study on Measurement Error Factors of Theodolite System (데오도라이트 시스템의 측정 오차 요인에 관한 연구)

  • 박홍철;윤용식;최석원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.272-275
    • /
    • 2003
  • Theodolite measurement system is non-contacted 3-dimensional measurement system. The system accuracy is 0.5 mm or better for distance 0 ~ 100 m. And the system is used for the measurement of a product for middle and large scale. This study was performed for finding the measurement error factors of the system. We could know that the main error factors are temperature, illumination and expertness. And we could find the measurement errors are $\pm$ 0.045 mm at temperature conditions is 2$0^{\circ}C$ and $\pm$ 0.012 mm at illumination condition is 300 lux. Also the results had significant differences by combinations of operator's expertness.

  • PDF

Development of Automatic ALC Block Measurement System Using Machine Vision (머신 비전을 이용한 ALC 블록 생산공정의 자동 측정 시스템 개발)

  • 엄주진;허경무
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.6
    • /
    • pp.494-500
    • /
    • 2004
  • This paper presents a machine vision system, which inspects the measurement of the ALC block on a real-time basis in the production process. The automatic measurement system was established with a CCD camera, an image grabber, and a personal computer without using assembled measurement equipment. Images obtained by this system was processed by an algorithm, specially designed for an enhanced measurement accuracy. For the realization of the proposed algorithm, a preprocessing method that can be applied to overcome uneven lighting environment, boundary decision method, unit length decision method in uneven condition with rocking objects, and a projection of region using pixel summation are developed. From our experimental results, we could find that the required measurement accuracy specification is sufficiently satisfied by using the proposed method.

Ultra Miniature Eddy Current Sensor with 3 Axes for On-Machine-Measurement (기상측정용 3축 구조의 초소형 와전류 센서 개발 및 평가)

  • Kim, Sun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.27-32
    • /
    • 2010
  • The OMM(On-Machine-Measurement) system has many advantages compare to conventional measurement in the way the time and cost. But, the sensor suitable to OMM system is restrictive use. Touch trigger probe sensor has long time for measurement and non-contact sensor has directional demerit. Because the long mechanical parts such as gear and lead screw for pump, injector and machine tools has big and heavy, unclamp and transferring for measurement in machining process is very difficult. This paper presents a development of ultra miniature eddy current displacement sensor with 3 axes for On-Machine-Measurement system. The accuracy of the sensor is experimentally proved in the grinding machine. In experimental results, the accuracy has under ${\pm}5\;{\mu}m$.

A Measurement Apparatus of Lateral Restoring Force Exerted on Electrostatically Suspended Object (정전부상체에 작용하는 횡방향 복원력 측정장치)

  • Jeon Jong Up;Park Ki-Tae;Park Kyu-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.60-69
    • /
    • 2005
  • In electrostatic suspension system of thin plates like a silicon wafer or an aluminum disk for hard disk applications, the lateral restoring force exerted on a suspended object plays an important role since the lateral motion of the suspended object, owing to the inherently stable restoring forces, can be passively stabilized without any active control of it. This paper reports about the measurement apparatus of the lateral restoring force originating from a relative translation of the suspended object with respect to the electrodes-for-suspension. An approximate calculation of the lateral force in disk-shaped objects, the structure of the measurement apparatus, a measurement method, stabilization condition and the guideline in designing the measurement apparatus are described. Experimental results obtained by using a 3.5-inch aluminum disk as a suspended object are presented as well in order to assess the magnitude of lateral force and stiffness, and also verify the usefulness of the measurement apparatus.

Investment Effect Analysis of Industrial Firms with a Measurement Standard Laboratory -With Reference to the Statistical Analysis of Product Inferiority Rate- (측정표준실(測定標準室) 설치업체(設置業體)의 투자효과분석(投資效果分析) -제품(製品)의 불량률변동(不良率變動)의 통계적(統計的) 고찰(考察)을 중심(中心)으로-)

  • Kim, Dong-Jin;An, Ung-Hwan
    • Journal of Korean Society for Quality Management
    • /
    • v.18 no.1
    • /
    • pp.84-95
    • /
    • 1990
  • The objective of this study is to understand the effect of measurement-related investment. That is, this study aims at verifying the correlation between the measurement-related investment and inferiority rate of products by statistical analysis. The samples of this study are 376 industrial companies in Korea, and the research data was analysed on inferiority state of industrial companies with a measurement standard laboratory. The analysis was made by the elementary statistics, the correlation analysis and the regression analysis. The results are summarized as follows : First, the inferioriy rate of the industrial companies with a measurement standard laboratory was relatively lower than that of the other companies without the laboratory by statistical significance. Second, the increment on measurement-related investment had a negative correlation with the increment of inferiority rate, and the increase of measurement-related investment showed decrease of the inferiority rate by regression analysis.

  • PDF

Bootstrap Confidence Intervals of Precision-to-Tolerance Ratio (PTR의 붓스트랩 신뢰구간)

  • Chang, Mu-Seong;Kim, Sang-Boo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.2
    • /
    • pp.37-43
    • /
    • 2007
  • ANOVA is widely used for measurement system analysis. It assumes that the measurement error is normally distributed, which may not be seen in certain industrial cases. In this study, the exact and bootstrap confidence intervals for precision-to-tolerance ratio (PTR) are obtained for the cases where the measurement errors are normally and non-normally distributed and the reproducibility variation can be ignored. Lognormal and gamma distributions are considered for non-normal measurement errors. It is assumed that the quality characteristics have the same distributions of the measurement errors. Three different bootstrap methods of SB (Standard Bootstrap), PB (Percentile Bootstrap), and BCPB (Biased-Corrected Percentile Bootstrap) are used to obtain bootstrap confidence intervals for PTR. Based on a coverage proportion of PTR, a comparative study of exact and bootstrap methods is performed. Simulation results show that, for non-normal measurement error cases, the bootstrap methods of SB and BCPB are superior to the exact one.

An Output Feedback Controller for a Ball and Beam System under Measurement Noise of Feedback Sensor (센서에 측정에러가 있는 볼-빔 시스템의 출력 궤환 제어기)

  • Kim, Hyun-Do;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.955-959
    • /
    • 2011
  • In this paper, we assume that an output sensor of a ball and beam system is coupled with AC measurement noise. We propose an output feedback controller for a ball and beam system under measurement noise of feedback sensor. Measurement noise makes feedback signals distorted, and results in performance degradation or even system failure. Therefore, we need to design a robust controller to accommodate the possible measurement noise in the feedback information. Our controller is equipped with a gain-scaling factor to minimize the effect of measurement noise in output feedback information. We give an analysis of the controlled system and illustrate the improved control performance via simulation and experiment for a ball and beam system.

A Study on the Measurement System for Alignment of Cylindrical Forging Die (원통형 단조금형의 정렬을 위한 측정시스템에 관한 연구)

  • Youn, Jae-Woong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.83-89
    • /
    • 2009
  • In most multi-stage forging processes, the die spotting process or alignment of punch and die depends on the manual operation. It results a very tedious and inefficient procedure, thus the proper measurement system is needed to improve productivity and accuracy. This paper proposes a measurement system for alignment of die and punch which has a cylindrical holder, and describes the system concepts using 3 eddy-current displacement transducers and precise measurement jig. In order to apply this measurement system to real situations, the measuring procedures and system calibration method, etc. are proposed. Finally, the accuracy and productivity of this measurement system are investigated in this paper.