• Title/Summary/Keyword: Measurement data

Search Result 11,476, Processing Time 0.032 seconds

Measurement of Elastic Constants by Simultaneously Sensing Longitudinal and Shear Waves as an Overlapped Signal

  • Seo, Hogeon;Song, Dong-Gi;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.2
    • /
    • pp.138-148
    • /
    • 2016
  • Measurement of elastic constants is crucial for engineering aspects of predicting the behavior of materials under load as well as structural health monitoring of material degradation. Ultrasonic velocity measurement for material properties has been broadly used as a nondestructive evaluation method for material characterization. In particular, pulse-echo method has been extensively utilized as it is not only simple but also effective when only one side of the inspected objects is accessible. However, the conventional technique in this approach measures longitudinal and shear waves individually to obtain their velocities. This produces a set of two data for each measurement. This paper proposes a simultaneous sensing system of longitudinal waves and shear waves for elastic constant measurement. The proposed system senses both these waves simultaneously as a single overlapped signal, which is then analyzed to calculate both the ultrasonic velocities for obtaining elastic constants. Therefore, this system requires just half the number of data to obtain elastic constants compared to the conventional individual measurement. The results of the proposed simultaneous measurement had smaller standard deviations than those in the individual measurement. These results validate that the proposed approach improves the efficiency and reliability of ultrasonic elastic constant measurement by reducing the complexity of the measurement system, its operating procedures, and the number of data.

On-line Static Load Modeling using Measurement Data (측정데이터를 이용한 실시간 정적 부하모델링)

  • Park, Sang-Hyun;Chung, Dong-Hyun;Kang, Sang-Gyun;Lee, Byong-Joon;Kwon, Sae-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.282-284
    • /
    • 2006
  • In this paper, Static load models are developed using measurement based approach which is fundamental for on-line load modeling. The measurement data can be acquired from PMU(phasor measurement units). On the assumption that we have on-line measurement data, a scheme which is for Static load model capable to apply SCADA/EMS is developed. The Least Squares criterion is used for minimizing between measured and simulated data. In this manner, On-line Static load modeling algorithm can be developed. In this paper, a scheme that simple Static load model is applied for On-line load modeling is studied.

  • PDF

AUTOMATED PROGRESS MEASUREHEMT FOR CONTRUCTION PROJECT

  • Seunghee Kang;Youngsoo Jung
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1068-1074
    • /
    • 2009
  • The progress is widely used as a critical index for successful construction project management. In spite of the importance of progress measurement, the excessive management effort to collect and maintain detailed data has been highlighted as a major barrier to measurement of highly accurate progress. In order to reduce the required workload and to enhance accuracy, several researches have been conducted. These researches can be categorized into two groups. First group focuses on automated data collection utilizing advanced technologies only for limited construction tasks. The second group is a research area where the standard progress measurement methodologies encompassing entire construction tasks are investigated. Topics include the adjusting the level of details, standardizing work processes, and applying flexible WBS. However, the techniques for automated data collection are not fully investigated yet in the second group. Combining these two research areas can provide a solution for more effective progress management in terms of enhancing accuracy and optimizing workload. However, there has been no comprehensive research addressing these two research groups in an integrated manner. In this context, the purpose of this paper is to propose a methodology that identifies the most suitable measurement method and data acquisition technology (e.g., GPS, RFID, etc.) for entire construction tasks of a project. The proposed methodology in this paper will be able to facilitate the selection process of data acquisition technologies for entire construction tasks of a project and to support the overall enhancement of automated progress management.

  • PDF

Production and measurement of a super-polished low-scattering mirror substrate (초연마 저산란 반사경 기판 제작과 평가)

  • 조민식
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.157-165
    • /
    • 1999
  • Production and measurement of a super-polished few-ppm-scattering mirror substrate are investigated. In order to improve the surface roughness directly determining scattering, the super-polishing process using Bowl-Feed technique is tried. The surface quality of the super-polished substrate is estimated by the phase-measuring interferometer. For the reliable roughness measurement using the interferometer, data averaging method is applied so that the optimal data averaging condition, 30 phase-data averaging and 20 intensity-data averaging, minimizing the measurement error is experimently searched. Based on the optimal data averaging condition, surface roughness of home-made mirror substrate is measured to be less than $0.5{\AA}$ rms corresponding to 2-ppm total-integrated-scattering.

  • PDF

Development of a 3-D Position Measurement Algorithm using 2-D Image Information (2차원 영상 정보를 이용한 3차원 위치 측정 알고리즘 개발)

  • Lee, J.H.;Jung, S.H.;Kim, D.H.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.141-148
    • /
    • 2013
  • There are several problems in the conventional 2-D image processing and 3-D measurement systems. In the case of the 2-D image processing system, it is not possible to detect elevation data. In a 3-D measurement system, it requires a skillful operator and a lot of time for measuring data. Also, there exist data errors depending on operators. The limitation of detecting elevation data in the 2-D image processing system can be solved by laser diodes. In this study an algorithm that measures the accurate data in a subject face to be detected by combining laser diodes and a commercial CCD camera is developed. In the development process, a planar equation is developed using laser diodes and the equation is used to obtain a normal vector. Based on the results, an algorithm that transforms commercial CCD camera coordinates to 3-D coordinates is proposed. The completed measurement method will be applied to replace a manual measurement system for vehicle bodies and parts by an automated system.

WIRELESS SENSOR NETWORK BASED BRIDGE MANAGEMENT SYSTEM FOR INFRASTRUCTURE ASSET MANAGEMENT

  • Jung-Yeol Kim;Myung-Jin Chae;Giu Lee;Jae-Woo Park;Moon-Young Cho
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1324-1327
    • /
    • 2009
  • Social infrastructure is the basis of public welfare and should be recognized and managed as important assets. Bridge is one of the most important infrastructures to be managed systematically because the impact of the failure is critical. It is essential to monitor the performance of bridges in order to manage them as an asset. But current analytical methods such as predictive modeling and structural analysis are very complicated and difficult to use in practice. To apply these methods, structural and material condition data collection should be performed in each element of bridge. But it is difficult to collect these detailed data in large numbers and various kinds of bridges. Therefore, it is necessary to collect data of major measurement items and predict the life of bridges roughly with advanced information technologies. When certain measurement items reach predefined limits in the monitoring bridges, precise performance measurement will be done by detailed site measurement. This paper describes the selection of major measurement items that can represent the tendency of bridge life and introduces automated bridge data collection test-bed using wireless sensor network technology. The following will be major parts of this paper: 1) Examining the features of conventional bridge management system and data collection method 2) Mileage concept as a bridge life indicator and measuring method of the indicator 3) Test-bed of automated and real-time based bridge life indicator monitoring system using wireless sensor network

  • PDF

A Laser Vision System for the High-Speed Measurement of Hole Positions (홀위치 측정을 위한 레이져비젼 시스템 개발)

  • Ro, Young-Shick;Suh, Young-Soo;Choi, Won-Tai
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.333-335
    • /
    • 2006
  • In this page, we developed the inspection system for automobile parts using the laser vision sensor. Laser vision sensor has gotten 2 dimensions information and third dimension information of laser vision camera using the vision camera. Used JIG and ROBOT for inspection position transfer. Also, computer integration system developed that control system component pal1s and manage data measurement information. Compare sensor measurement result with CAD Data and verified measurement result effectiveness taking advantage of CAD to get information of measurement object.

  • PDF

Bayesian smoothing under structural measurement error model with multiple covariates

  • Hwang, Jinseub;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.709-720
    • /
    • 2017
  • In healthcare and medical research, many important variables have a measurement error such as body mass index and laboratory data. It is also not easy to collect samples of large size because of high cost and long time required to collect the target patient satisfied with inclusion and exclusion criteria. Beside, the demand for solving a complex scientific problem has highly increased so that a semiparametric regression approach could be of substantial value solving this problem. To address the issues of measurement error, small domain and a scientific complexity, we conduct a multivariable Bayesian smoothing under structural measurement error covariate in this article. Specifically we enhance our previous model by incorporating other useful auxiliary covariates free of measurement error. For the regression spline, we use a radial basis functions with fixed knots for the measurement error covariate. We organize a fully Bayesian approach to fit the model and estimate parameters using Markov chain Monte Carlo. Simulation results represent that the method performs well. We illustrate the results using a national survey data for application.

Ultrafine Particle Toxicities, Current Measurement Techniques and Controls (Ultrafine Particle의 독성, 측정방법 및 관리)

  • Lee, Su-Gil;Kim, Seong-Soo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.3
    • /
    • pp.203-215
    • /
    • 2010
  • This study is an overview of toxicities and measurement techniques of ultrafine particles (UFPs), and their exposure controls. UFPs are ubiquitous in many working situations. Exposure to UFPs is possibly causing adverse health symptoms including cardio-respiratory disease to humans. In order to measure exposure levels of airborne UFPs, there are current available measurement guidelines, instruments and other techniques (i.e. contour mapping, control banding). However, these risk assessment techniques including measurement techniques, controls and guidelines are dependent on background levels, metrics (e.g. size, mass, number, surface area, composition), environmental conditions and controls. There are no standardized measurement methods available and no generic and specific occupational exposure standards for UFPs. It is thought that there needs to be more effort to develop Regulations and Exposure Standards for generic UFPs should be based on more exposure data, health surveys, toxicological data and epidemiological data. A carefully considered hierarchy of controls can also reduce the maximum amount of airborne UFPs being emitted from diverse sources in industries.

The study of load measurement on U50 wind turbine (U50 풍력발전기 하중측정 실증연구)

  • Cho, Joo-Suk;Hong, Hyeok-Soo;Bang, Jo-Hyug;Park, Jin-Il;Ryu, Ji-Yune
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.114-122
    • /
    • 2007
  • This paper addresses the measurement of structural loads on the Unison U50 wind turbine. The load measurement are carried out to determine the actual loads acting on a wind turbine. This is needed not only the certification process but also improving the technical development for prototype wind turbine. The measurement system is consists of measuring load, operating quantities and meteorological signal. All data that occur during the operating of a WT are stored the data acquisition system automatically. With using the measured data, load spectrum and equivalent load are evaluated according to IEC61400-13 "Measurement of mechanical loads".

  • PDF