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Abstract

In healthcare and medical research, many important variables have a measurement
error such as body mass index and laboratory data. It is also not easy to collect samples
of large size because of high cost and long time required to collect the target patient
satisfied with inclusion and exclusion criteria. Beside, the demand for solving a complex
scientific problem has highly increased so that a semiparametric regression approach
could be of substantial value solving this problem. To address the issues of measurement
error, small domain and a scientific complexity, we conduct a multivariable Bayesian
smoothing under structural measurement error covariate in this article. Specifically we
enhance our previous model by incorporating other useful auxiliary covariates free of
measurement error. For the regression spline, we use a radial basis functions with fixed
knots for the measurement error covariate. We organize a fully Bayesian approach to fit
the model and estimate parameters using Markov chain Monte Carlo. Simulation results
represent that the method performs well. We illustrate the results using a national
survey data for application.

Keywords: Bayes, multivariable, radial basis functions, small area, structural measure-
ment error.

1. Introduction

In healthcare and medical research, there are frequently appearing variables such that
heigh, weigh, blood pressure, cholesterol levels and amount of hemoglobin. These are very
important but observed with measurement errors because of unknown effects. This mea-
surement error makes complex the statistical analysis and this problem is generally called
measurement error problem and the statistical models considering this error are called mea-
surement error models (Fuller, 1987). Goo and Kim (2013) and Hwang (2015) refered about
measurement error modeling. There are two versions, the first is called structural measure-
ment error model where measurement error covariate is considered as a random variable.
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And the other version is called functional measurement error model where measurement
error covariate is considered as a non-random variable.

To collect many sample is not easy in healthcare and medical research because the high
cost and long time are required in order to collect the target patient satisfied with inclusion
and exclusion criteria. So, the research is seldom possible to collect a large enough sample
to support precision of estimates for small patient group by ages and sex. Small patients
group refers to the term “small area” in this context. To deal with this problem there are
two of the more common small area models, the first is “Fay-Herriot model” and the other
is “nested area unit level regression model” (Rao and Molina, 2015).

The real data is often too complicated to understand for the human mind and semipara-
metric regression models that combined the parametric and non-parametric models can re-
duce complex data sets. For non-parametric component there are many “smooth” functions
such as a penalized spline, B-splines, natural cubic splines and a radial basis function.

For dealing with measurement error, small area and semiparametric regression, we de-
veloped Bayesian curve-fitting using penalized splines with functinoal measurement error
model based on “nested area unit level regression model” (Hwang and Kim, 2010). Also,
Hwang and Kim (2016) developed the multivariable version under functional measurement
error model.

The purpose of this paper is to develop the semiparametric small area model under struc-
tural measurement error with multiple covariates. Especially, we use a radial basis functions
for the smoothing because the truncated polynomial basis functions are often numerically
non-stable when the smoothing parameter close to zero and the number of knots is large.
Radial basis functions are available for the dealing with this problem (Ruppert et al., 2003).
For radial basis functions, we use fixed knots using a equally spaced sample quantiles of a
measurement error covariate. To apply the model and estimate parameters, we conduct a hi-
erarchical Bayesian (HB) method based on Markov chain Monte Carlo (MCMC), specifically
Metropolis-Hastings (M-H) and Gibbs sampling.

We start with a overview of the model specification and notations in Section 2. In Section
3, we explain the MCMC implementation for the proposed hierarchical Bayes procedure
and prove the propriety of the posterior because we use non-informative priors for some
hyperparameters. Also we show full conditional distributions of all parameters in Section
3. We conduct simulation studies for checking the performance of our model based on the
root mean square error (RMSE) in Section 4. Section 5 include the result of a real data
analysis and we compare models based on the posterior predictive p-value (Meng, 1994),
the mean logarithmic conditional predictive ordinate (Carlin and Louis, 2009) and deviance
information criterion (Spiegelhalter et al., 2002). Finally, we discuss results and some possible
extensions of our model in Section 6.

2. Model specification and Notations

In this paper, we consider only one dimension radial basis functions (RBF) and then RBF
is defined as follows

|x1 − τ1|, |x1 − τ2|, · · · , |x1 − τk|,

where x1 is a measurement error covariate, | | is the function of absolute value, τ =
(τ1, τ2, · · · , τk)T are knots based on sample quantiles of measurement error covariate (τ1 <
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τ2 < · · · < τk) and k is the number of knots.
We presume that there arem strata and each strata size isNi. And let (yij , X1ij , x2i, · · · , xpi)

denote the observed response and covariates of the jth unit (j = 1, 2, · · · , Ni) in the ith stra-
tum (i = 1, 2, · · · ,m), respectively. Here, we assume that covariates x2, x3, · · · , xp have not
a measurement error. Then we can express our superpopulation model based on the unit
level nested error regression with RBF as follows

yij = b0 + b1x1i + b2x2i + · · ·+ bpxpi +

K∑
k=1

|x1i − τk|+ ui + eij . (2.1)

Here a random effect ui is the area-specific effects.
We are able to rewrite our model with structural measurement error covariate x1 and

other auxiliary covariates x2, x3, · · · , xp, free of measurement error, based on (2.1)

yij = bTxi + γTzi + ui + eij

= θi + eij ,

X1ij = x1i + ηij ,

where b = (b0, b1, · · · , bp)T , xi = (1, x1i, x2i, · · · , xpi)T , zi = (|x1i− τ1|, |x1i− τ2|, · · · , |x1i−
τk|)T and γ = (γ1, γ2, · · · , γk)T , eij and ui are sampling errors and random effects with
identically distributed and independent normal random variables, respectively. Also ηij is
the measurement error with normal distribution. We regard a structural measurement error
model, so we let x1i is a normal random variable. Here zi presents a radial basis associated
with the measurement error covariate x1i with k-knots, b = (b0, b1, · · · , bp)T is the vector of
regression coefficients and γ = (γ1, · · · , γK)T is the vector of spline coefficients. We suppose
that x1i, ui, eij and ηij are mutually independent with x1i ∼ N(µ, σ2

x), ui ∼ N(0, σ2
u), eij ∼

N(0, σ2
e) and ηij ∼ N(0, σ2

η), respectively. Finally, we want to estimate small area means

θi(= bTxi + γTzi + ui).

3. Hierarchical Bayesian approach to adaptive model

3.1. Hierarchical Bayesian framework

For fitting the model and estimating parameters based on sample ni from the ith stratum,
we use a hierarchical Bayesian framework based on the following stages:

Stage 1. yij = θi + eij (j = 1, · · · , ni; i = 1, · · · ,m).

Stage 2. θi = bTxi + γTzi + ui (i = 1, · · · ,m).

Stage 3. X1ij = x1i + ηij (j = 1, · · · , ni; i = 1, · · · ,m).

Stage 4. x1i ∼ N(µx, σ
2
x).

Stage 5. γ ∼ N(0, σ2
γI).
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Stage 6. b = (b0, b1, · · · , bp)T , µx, σ2
e , σ2

γ , σ2
u, σ2

η and σ2
x are mutually independent with

b and µx ∼ uniform(−∞,∞), respectively; (σ2
e)−1 ∼ G(ae, be),(σ

2
γ)−1 ∼ G(aγ , bγ),

(σ2
u)−1 ∼ G(au, bu), (σ2

x)−1 ∼ G(ax, bx) and (σ2
η)−1 ∼ G(aη, bη) where

G(α, β) denotes gamma distribution with rate parameter β and shape parameter
α having the expression f(x) ∝ exp(−βx)xα−1.

First, we confirm the propriety of the joint posterior because we define uniform distri-
bution for the prior of regression coefficients b and mean parameter µx of x1i that is a
non-informative improper priors. In order to prove the propriety of the joint posterior more
convenient, we factorize the full posterior by the conditional independence properties as
follow[
θ,x1, b,γ, µx, σ

2
x, σ

2
e , σ

2
u, σ

2
η, σ

2
γ |X,y

]
∝
[
y|θ, σ2

e

] [
θ|x1, b,γ, σ

2
u,X

] [
X|x1, σ

2
η

] [
x1|µx, σ2

x

] [
γ|σ2

γ

]
[b] [µx]

[
σ2
x

] [
σ2
e

] [
σ2
u

] [
σ2
η

] [
σ2
γ

]
.

Theorem 3.1 Assume that ae, aγ , (au+m/2−p/2), (ax+m/2−1) and (aη +nt/2−m/2)
are all positive where p = rank(X∗) and nt =

∑m
i=1 ni. Then the joint posterior is proper.

Proof : Let the basic full parameter space is Ω =
{
θ, b,γ,x1, µx, σ

2
x, σ

2
e , σ

2
u, σ

2
η, σ

2
γ

}
. And

let

I =

∫
· · ·
∫
p(Ω|X,y)dΩ

=

∫
· · ·
∫

[y|θ, σ2
e ][θ|x1, b,γ, σ

2
u,X][X|x1, σ

2
η][x1|µx, σ2

x]

×[γ|σ2
γ ][b][µx][σ2

e ][σ2
u][σ2

η][σ2
γ ][σ2

x]dΩ.

We prove the propriety of the joint posterior by showing I ≤M (any finite positive constant).

First, we integrate with respect to µx based on exp
[
−(2σ2

x)−1
∑

(x− x̄)
2
]
≤ 1,

Iµx =

∫
[x1|µx, σ2

x][µx]dµx (3.1)

= (σ2
x)−

m
2

∫
exp

[
− 1

2σ2
x

m∑
i=1

(x1i − µx)
2

]
dµx

= (σ2
x)−

m
2 exp

[
− 1

2σ2
x

m∑
i=1

(x1i − x̄1)
2

]∫
exp

[
− 1

2σ2
x

m (µx − x̄1)
2

]
dµx

≤ K1 · (σ2
x)−

m−1
2 .

Here K1 is a constant.
Second, let X∗ = (xT1 , · · · ,xTm)T , p = rank(X∗). Based on wT (I − PX∗)w ≥ 0, we
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integrate for b,

Ib =

∫
[θ|b,γ,x1, σ

2
u,X][b]db (3.2)

= (σ2
u)−

m
2

∫
exp

[
− 1

2σ2
u

m∑
i=1

(
θi − bTxi + γTzi

)2]
db

= (σ2
u)−

m
2

∫
exp

[
− 1

2σ2
u

m∑
i=1

(
wi − bTxi

)2]
db

= (2π)
m
2 (σ2

u)−
m
2 (σ2

u)
2
p |XT

∗X∗|−
1
2 exp

[
− 1

2σ2
u

wT (I − PX∗) w

]
≤ K2 · (σ2

u)−
(m−p)

2 · |XT
∗X∗|−

1
2 .

Here K2 is a constant, wi = θi − zTi γ and PX∗ = X∗(X
T
∗X∗)

−1XT
∗ .

Next, we integrate with respect to x1 based on referred method by Ghosh, Sinha and Kim
(2006).

Ix1
=

∫
[X|x1, σ

2
η]|XT

∗X∗|−
1
2 dx1 (3.3)

∝ (σ2
η)−

nt
2 exp

− 1

2σ2
η

m∑
i=1

ni∑
j=1

(
X1ij −X1i

)2∫ |XT
∗X∗|−

1
2

×exp

[
− 1

2σ2
η

m∑
i=1

ni(X1i − x1i)2
]
dx

≤ K ′3 · (σ2
η)−

nt−m
2 exp

− 1

2σ2
η

m∑
i=1

ni∑
j=1

(
X1ij −X1i

)2
≤ K3 · (σ2

η)−
nt−m

2 .

Here K ′3 and K3 are constants and nt =
∑m
i=1 ni.

Now, we assume that au, ax and aη are all positive and integrate with respect to σ2
u, σ2

x

and σ2
η based on gamma distribution

Iσ2
u

=

∫
[σ2
u](σ2

u)−(m−p)/2dσ2
u =

∫
(σ2
u)−(m/2+au−p/2)−1exp

(
−bu/σ2

u

)
dσ2

u = K4, (3.4)

Iσ2
x

=

∫
[σ2
x](σ2

x)−(m−1)/2dσ2
x =

∫
(σ2
x)−(m/2+ax−1)−1exp

(
−bx/σ2

x

)
dσ2

x = K5, (3.5)

Iσ2
η

=

∫
[σ2
η](σ2

η)−(nt−m)/2dσ2
η =

∫
(σ2
η)−(nt/2+aη−m/2)−1exp

(
−bη/σ2

η

)
dσ2

η = K6. (3.6)

Here K4, K5 and K6 are constants.
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Through combining (3.1)∼(3.6), we have

I ≤ K1K2K3K4K5K6

∫
· · ·
∫ [

y|θ, σ2
e

] [
γ|σ2

γ

] [
σ2
e

] [
σ2
γ

]
dΩ∗, (3.7)

where Ω∗ = (Ω− µx − b− x1 − σ2
u − σ2

x − σ2
η).

The right term of (3.7) would be finite since the remaining components of the integrand
have proper distributions when ae and aγ are all positive. Thus, the joint posterior I is finite
and the propriety of the posterior is proved. �

3.2. Inference and diagnostic

In this model, we implement the Bayesian procedure based on MCMC numerical inte-
gration technique, in particular the M-H algorithm and Gibbs sampler because the full
conditional distribution of x1i is not a closed form. For all parameters θ, b,γ,x1, µx, σ

2
x,

σ2
e , σ

2
u, σ

2
η, we generate samples from full conditional distribution of each parameter using

M-H algorithm and Gibbs sampling. The full conditional distribution for each parameter is
as follow:

(1)
[
θi|b,γ,x1, µx, σ

2
x, σ

2
e , σ

2
γ , σ

2
u, σ

2
η,y,X

]
iid∼ N

[
(1− Ci) ȳi +

(
bTxi + γTzi

)
Ci, σ

2
e/ (1− Ci)ni

]
where Ci = σ2

e/
(
niσ

2
u + σ2

e

)
.

(2)
[
b|θ,γ,x1, µx, σ

2
x, σ

2
e , σ

2
γ , σ

2
u, σ

2
η,y,X

]
∼ N

[(
XT
∗X∗

)−1
XT
∗w,

(
XT
∗X∗

)−1
σ2
u

]
where X∗ =

(
xT1 , · · · ,xTm

)T
, wi = θi − γTzi, w = (w1, · · · , wm)

T
.

(3)
[
γ|θ, b,x1, µx, σ

2
x, σ

2
e , σ

2
γ , σ

2
u, σ

2
η,y,X

]
∼ N

[(
I
σ2
γ

+ ZTZ
σ2
u

)−1
ZT

σ2
u

t,
(
I
σ2
γ

+ ZTZ
σ2
u

)−1]

where Z =

 |x11 − τ1| · · · |x11 − τk|
...

...
...

|x1m − τ1| · · · |x1m − τk|

, ti = θi − bTxi, t = (t1, · · · , tm)T .

(4)
[
x1i|θ, b,γ, µx, σ2

x, σ
2
e , σ

2
γ , σ

2
u, σ

2
η,y,X

]
iid∼ exp

{
− 1

2σ2
u

(θi − xTi b− zTi γ)2
}

×N
[(
σ−2η ni + σ−2x

)−1 (
σ−2η niX1i + σ−2x µx

)
,
(
σ−2η ni + σ−2x

)−1]
.

(5)
[
µx|θ, b,γ,x1, σ

2
x, σ

2
e , σ

2
γ , σ

2
u, σ

2
η,y,X

]
∼ N

(
x1, σ

2
x/m

)
.

(6)
[
σ−2e |θ, b,γ,x1, µx, σ

2
x, σ

2
γ , σ

2
u, σ

2
η,y,X

]
∼ G

[
nt
2 + ae,

1
2

∑m
i=1

∑ni
j=1 (yij − θi)2 + be

]
.
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(7)
[
σ−2u |θ, b,γ,x1, µx, σ

2
x, σ

2
e , σ

2
γ , σ

2
η,y,X

]
∼ G

[
m
2 + au,

1
2

∑m
i=1

(
θi − xTi b− zTi γ

)2
+ bu

]
.

(8)
[
σ−2η |θ, b,γ,x1, µx, σ

2
x, σ

2
e , σ

2
γ , σ

2
u,y,X

]
∼ G

[
nt
2 + aη,

1
2

∑m
i=1

∑ni
j=1 (X1ij − x1i)2 + bη

]
.

(9)
[
σ−2γ |θ, b,γ,x1, µx, σ

2
x, σ

2
e , σ

2
u, σ

2
η,y,X

]
∼ G

[
k
2 + aγ ,

1
2γ

Tγ + bγ
]
.

(10)
[
σ−2x |θ, b,γ,x1, µx, σ

2
e , σ

2
γ , σ

2
u, σ

2
η,y,X

]
∼ G

[
m
2 + ax,

1
2

∑m
i=1(x1i − µx)2 + bx

]
.

To get samples from full conditional distributions, we conduct L chains and 2d iterations
for each chain. To diminish the effect of starting samples, from the first to d iterations of
each chain are eliminated for all parameters and posterior summaries are calculated based
on d remaining samples. The hierarchical Bayes estimators for small area means θ1, · · · , θm
are approximated as:

E (θi|y,X) = E
[
E
(
θi|x1, b,γ, µx, σ

2
x, σ

2
e , σ

2
u, σ

2
γ , σ

2
η,y,X

)]
(3.8)

' 1

Ld

L∑
l=1

2d∑
s=d+1

[(
1− C(lr)

i

)
yi +

(
bT (lr)x

(lr)
i + γT (lr)z

(lr)
i

)
C

(lr)
i

]
and the posterior variance is also estimated as:

V (θi|y,X) = E
[
V
(
θi|x1, b,γ, µx, σ

2
x, σ

2
e , σ

2
u, σ

2
γ , σ

2
η,y,X

)]
+V

[
E
(
θi|x1, b,γ, µx, σ

2
x, σ

2
e , σ

2
u, σ

2
γ , σ

2
η,y,X

)]
' 1

Ld

L∑
l=1

2d∑
s=d+1

(
σ
2(lr)
e

ni
(1− C(lr)

i )

)

+
1

Ld

L∑
l=1

2d∑
s=d+1

[(
1− C(lr)

i

)
yi +

(
bT (lr)x

(lr)
i + γT (lr)z

(lr)
i

)
C

(lr)
i

]2
− [E(θi|X,y)]

2
.

To check the convergence of MCMC, we calculate
√
R̂i that is the estimator of a potential

scale reduction factors (Gelman and Rubin, 1992). When
√
R̂i is close to 1 for all θi, it

means that the sampling is satisfied with the convergence.
For simulation studies, we calculate the root mean squared errors (RMSE) for each θi from

independent simulations to confirm the model adequacy. Also we check the posterior predic-
tive p-value (p), deviance information criterion (DIC) and the mean logarithmic conditional
predictive ordinate (LCPO1) to confirm the performance for application. If p is close to 0.5
and LCPO1 and DIC is more small, it means that the model is better supported based on
the data.
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4. Simulation Studies

To compare the performance, we consider one covariate with measurement error and one
covariate free of measurement error. The first true function is

y = 5 + 3x1 + 4x21 + 5x2, (x1, x2) ∈ [−2, 2]

and the second true function is

y = 5 + cos(2x1) + 2exp(−16x21) + 5x2, (x1, x2) ∈ [−2, 2],

where x1 has a measurement error and x2 has not a measurement error.
To get simulated data, we sequentially generate x1i and x2i (i = 1, · · · , 12) on [-2,2] and

then we generate X1ij from x1i with error ηij ∼ N(0, 0.32). And θi are generated from x1i
with random error ui ∼ N(0, 0.12) and x2i for the true function. Finally, yij are generated
from θi with errors eij ∼ N(0, 22). We conduct independently five chains (L = 5) and 10,000
samples (d = 10, 000). We set 1.0 for all hyperparameters au, bu, ae, be, aη, bη, aη, bη, ax and
bx and we consider one and three knots (k = 1 and k = 3). We conduct the sensitivity
analysis for those hyperparameters and k, the results are not sensitive. For checking the
model adequacy, we conduct 100 independent simulations to calculate RMSE as:

RMSEi =

√√√√ 100∑
s=1

(θ
(s)
i − θ̂

(s)
i )2/100.

We compare two models based on two simulated data. For estimating small area means,
we only use the measurement error covariate x1 in Model 1. And we consider x2 free of
measurement error covariate with x1 in Model 2. In our simulation studies, R̂i ' 1 for all
θi and 2 models. We present the detailed results in Table 4.1 ∼ Table 4.4. In Table 4.1 and
Table 4.2, we report the sample size, true mean (TM) and small area means for Model 1 and
Model 2 based on two simulated data, respectively. And we report RMSE for each strata
and overall RMSE in Table 4.3 and Table 4.4.

For the first simulated data, Model 1 with k = 1 and k = 3 have 9.167 and 8.303 overall
RMSE, respectively. And Model 2 with k = 1 and k = 3 have 8.864 and 8.120 overall RMSE,
respectively. Therefore, the performance of Model 2 is better than Model 1 for all k based
on overall RMSE. For the second simulated data, Model 2 with k = 1 and k = 3 have 7.439
and 7.593 overall RMSE and Model 2 with k = 1 and k = 3 have 7.280 and 7.438 overall
RMSE, respectively. Also, Model 2 is better than Model 1 for all k in the second simulation
study.

5. Application

For application, we consider the sixth wave (2014) of the Korean National Health and
Nutrition Examination Survey (KNHANES), the nationally representative sample. The KN-
HANES has been annually performed since 1988 by the Korea Centre for Disease Control
and Prevention (KCDC). The data of KNHANES consists of demographic such as age and
sex, laboratory data such as blood pressure, weight and height, life-style, family history
(KCDC, 2013).
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Table 4.1 Small area means for the first simulated data

i ni TM
Model 1 Model 2

k = 1 k = 3 k = 1 k = 3
1 5 4.996 4.199 4.714 4.566 4.830
2 10 2.645 2.705 2.716 2.663 2.668
3 5 1.281 1.860 1.390 1.591 1.330
4 7 1.024 1.536 1.084 1.317 1.027
5 8 1.819 1.992 1.988 1.944 1.968
6 8 3.711 3.397 3.720 3.481 3.730
7 7 6.559 6.503 6.624 6.374 6.616
8 9 10.612 10.695 10.717 10.754 10.756
9 8 15.577 15.535 15.446 15.723 15.461
10 7 21.625 21.557 21.504 21.736 21.548
11 7 28.880 28.889 28.887 28.912 28.932
12 5 36.996 36.708 36.771 36.434 36.700

Table 4.2 Small area means for the second simulated data

i ni TM
Model 1 Model 2

k = 1 k = 3 k = 1 k = 3
1 5 -5.657 -5.609 -5.582 -5.742 -5.709
2 10 -4.183 -4.062 -4.062 -4.058 -4.054
3 5 -2.185 -1.951 -1.971 -1.911 -1.924
4 7 0.195 0.321 0.316 0.365 0.352
5 8 2.728 2.771 2.771 2.796 2.791
6 8 6.248 5.926 5.923 5.844 5.853
7 7 8.017 7.649 7.648 7.638 7.643
8 9 8.221 8.294 8.285 8.306 8.297
9 8 9.288 9.344 9.332 9.353 9.331
10 7 10.539 10.641 10.645 10.659 10.642
11 7 12.211 12.34 12.352 12.358 12.365
12 5 14.342 14.082 14.101 14.125 14.168

Table 4.3 RMSEs for the first simulated data

i ni
Model 1 Model 2

k = 1 k = 3 k = 1 k = 3
1 5 1.037 0.741 0.846 0.730
2 10 0.484 0.477 0.518 0.516
3 5 0.859 0.661 0.832 0.776
4 7 0.758 0.559 0.691 0.605
5 8 0.634 0.603 0.662 0.616
6 8 0.695 0.573 0.664 0.563
7 7 0.700 0.675 0.701 0.596
8 9 0.709 0.691 0.675 0.623
9 8 0.709 0.725 0.675 0.651
10 7 0.838 0.858 0.795 0.772
11 7 0.830 0.837 0.767 0.772
12 5 0.914 0.903 1.038 0.900

overall 9.167 8.303 8.864 8.120

The factors affecting blood pressure are known as sex, age, smoking, obesity and con-
sumption of sodium potassium, vitamin D and so on. In this application, we estimate blood
pressure of groups stratified by smoking, gender and ages. We use systolic and diastolic
blood pressure (SBP & DPB) as outcome variables and body mass index (BMI) as a mea-
surement error covariate, respectively. And we consider amount of vitamin D (ng/mL) as
other covariate that have not measurement error.
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Table 4.4 RMSEs for the second simulated data

i ni
Model 1 Model 2

k = 1 k = 3 k = 1 k = 3
1 5 0.603 0.625 0.573 0.602
2 10 0.508 0.509 0.483 0.486
3 5 0.724 0.721 0.670 0.680
4 7 0.565 0.591 0.533 0.561
5 8 0.570 0.587 0.522 0.540
6 8 0.643 0.643 0.661 0.658
7 7 0.646 0.652 0.666 0.670
8 9 0.542 0.550 0.540 0.553
9 8 0.537 0.559 0.535 0.561
10 7 0.632 0.652 0.650 0.658
11 7 0.686 0.697 0.688 0.694
12 5 0.783 0.807 0.759 0.775

overall 7.439 7.593 7.280 7.438

We exclude subjects from 7,550 in 2014 based on exclusion criteria (1) over aged 40
years who should watch for hypertension (2) who had hypertension history. So, we use 956
subjects for application. We conduct independently five chains (L = 5) and 10,000 samples
(d = 5, 000) and we set 1.0 for all hyperparameters au, bu, ae, be, aη, bη, aη, bη, ax and bx. And
we consider one and three knots (k = 1 and k = 3). We conduct the sensitivity analysis
for those hyperparameters and k, the results are not sensitive. We check the convergence by√
R̂i and we use LCPO1, DIC and p to confirm the performance.

In this application,
√
R̂ ' 1 for all θi and two models (Model 1: BMI only, Model 2: BMI

and vitamin D. We report the sample size, small area means and standard error for each
strata and we present LCPO1, DIC and p in Table 5.1 and Table 5.2.

For SBP, we can see that Model 2 with k = 3 has the smallest LCPO1 and DIC as 4.711
and 7651.243, respectively. But Model 1 with k = 1 is better than other models based on
p-value as 0.460 in Table 5.1. Also, for DBP, Model 2 with k = 1 has the smallest LCPO1

and DIC as 4.328 and 6712.643, respectively. And Model 1 with k = 1 is better than other
models based on p-value as 0.458 in Table 5.2. Here, the best models are different by model
selection criteria and we use LCPO1 and DIC in this paper.

Based on Model 2 with three knots, smoker of 50’s has the highest SBP as 119.401 in male
and non-smoker of 40’s has the highest SBP as 120.117 in female. Also, smoker of 40’s in
male and smoker 50’s in female have the highest DBP as 77.829 and 77.240, respectively,
based on Model 2 with one knot.

6. Concluding Remarks

We develop multivariable Bayesian smoothing based on radial basis functions under struc-
tural measurement error model with fixed knots. Based on simulation studies, we show the
availability with additional auxiliary covariate and we apply the real data using our model.
So we expect that our model is useful to solve for small sample sizes, a complex scientific and
measurement error problems with multiple covariates in many fields as well as healthcare
and medical research.

Furthermore, we are able to extend our model. First, we do not consider possibility of
measurement error for auxiliary covariates (vitamin D and sodium), so we could extend
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Table 5.1 The result for SBP

Gender Smoker Age ni

Model 1 Model 2
k = 1 k = 3 k = 1 k = 3

Mean s.e. Mean s.e. Mean s.e. Mean s.e.

Male

No
40-49 65 116.640 1.335 116.593 1.337 117.206 1.300 117.473 1.314
50-59 75 114.317 1.236 114.337 1.234 114.164 1.181 114.254 1.150
60- 106 109.626 1.099 109.618 1.097 109.406 1.077 109.369 1.065

Yes
40-49 77 115.661 1.214 115.698 1.214 116.500 1.281 116.240 1.275
50-59 63 119.707 1.385 119.650 1.388 119.517 1.365 119.401 1.344
60- 54 114.295 1.435 114.275 1.427 114.305 1.353 114.486 1.324

Female

No
40-49 179 120.378 0.850 120.389 0.848 120.210 0.864 120.117 0.874
50-59 176 113.377 0.844 113.404 0.846 113.209 0.829 113.227 0.821
60- 139 117.631 0.936 117.648 0.934 117.845 0.918 117.909 0.908

Yes
40-49 14 115.339 2.297 115.308 2.275 112.718 2.277 112.154 2.237
50-59 3 109.276 5.233 109.037 5.209 112.981 3.369 113.022 3.106
60- 5 112.288 4.515 111.423 4.689 112.416 4.124 113.274 4.094

LCPO1 4.728 4.715 4.720 4.711
DIC 7662.730 7663.361 7656.962 7651.243

p 0.460 0.458 0.447 0.449

Table 5.2 The result for DBP

Gender Smoker Age ni

Model 1 Model 2
k = 1 k = 3 k = 1 k = 3

Mean s.e. Mean s.e. Mean s.e. Mean s.e.

Male

No
40-49 65 75.580 0.910 75.564 0.912 75.751 0.918 75.649 0.934
50-59 75 76.374 0.835 76.376 0.835 76.342 0.845 76.290 0.847
60- 106 72.687 0.716 72.677 0.717 72.600 0.728 72.648 0.731

Yes
40-49 77 77.650 0.854 77.663 0.852 77.829 0.862 77.946 0.867
50-59 63 71.976 0.919 71.958 0.917 71.959 0.925 71.947 0.918
60- 54 73.654 0.943 73.635 0.942 73.593 0.945 73.570 0.937

Female

No
40-49 179 73.730 0.564 73.739 0.565 73.723 0.565 73.706 0.563
50-59 176 76.521 0.568 76.530 0.567 76.483 0.575 76.465 0.575
60- 139 73.198 0.638 73.207 0.639 73.228 0.646 73.233 0.644

Yes
40-49 14 73.500 1.486 73.474 1.483 72.871 1.605 73.017 1.599
50-59 3 69.760 3.081 69.74 3.053 70.937 2.522 71.088 2.478
60- 5 77.402 2.812 77.047 2.924 77.240 2.819 77.053 2.765

LCPO1 4.341 4.331 4.328 4.331
DIC 6715.817 6715.951 6712.643 6713.402

p 0.458 0.456 4.448 4.446

multivariable model with multi-dimensional measurement error covariates. Also, we don’t
consider a measurement error of outcome variable like as blood pressure and we could
develop model with measurement error outcome and covariate. Next, we assume the normal
distribution for outcome variable and measurement error covariate. So, we may consider
other distributions and this can be extended in our model. Finally, we use fixed knots in
penalized spline and we can consider free knots based on reversible jump MCMC method
(Green, 1995). Additionally, in application, the best models for SBP and DBP are different
by model selection criteria. So, we need to confirm the best model selection criteria for our
models based on simulation study.
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