• Title/Summary/Keyword: Measurement System Analysis

Search Result 4,124, Processing Time 0.033 seconds

A Study of Gage R&R Analysis Considering the Variations of Between-Within Group and Within Part (군간-군내-부품내 변동을 고려한 Gage R&R 분석에 관한 연구)

  • Lee, Seung-Hun;Lee, Chang-U
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.975-982
    • /
    • 2005
  • The purpose of the Gage R&R study is to determine whether a measurement system is adequate for monitoring a process. If the measurement system variation is small relative to the process variation, then the measurement system is deemed 'adequate'. The sources of variation associated with the measurement system are compared using an analysis of variance (ANOVA) model, in general. A typical ANOVA model used in a standard Gage R&R study is the two-factor random effect model. Then, the ANOVA partitions the total variation into three categories: repeatability, reproducibility, part variation. However, if the process variation possesses the between group variation, within group variation, and within-part variation, these variations can cause the measurement system evaluation to provide misleading results. That is, in the standard Gage R&R study these variations affect the estimate of repeatability, reproducibility, or both. This paper presents a four-factor nested factorial ANOVA model which explicitly considers these variations for the Gage R&R study. The variance component estimates are derived by setting the EMS equations equal to the corresponding mean square from the ANOVA table and solving. And the proposed model is compared with the standard Gage R&R model.

  • PDF

A Study of Gage R&R Analysis Considering the Variations of Between-Within Group and Within Part (군간-군내-부품내 변동을 고려한 Gage R&R 분석에 관한 연구)

  • Lee, Seung-Hoon;Lee, Chang-Woo
    • IE interfaces
    • /
    • v.18 no.4
    • /
    • pp.444-453
    • /
    • 2005
  • The purpose of the Gage R&R study is to determine whether a measurement system is adequate for monitoring a process. If the measurement system variation is small relative to the process variation, then the measurement system is deemed "adequate". The sources of variation associated with the measurement system are compared using an analysis of variance (ANOVA) model, in general. A typical ANOVA model used in a standard Gage R&R study is the two-factor random effect model. Then, the ANOVA partitions the total variation into three categories: repeatability, reproducibility, part variation. However, if the process variation possesses the between group variation, within group variation, and within part variation, these variations can cause the measurement system evaluation to provide misleading results. That is, in the standard Gage R&R study these variations affect the estimate of repeatability, reproducibility, or both. This paper presents a four-factor nested factorial ANOVA model which explicitly considers these variations for the Gage R&R study. The variance component estimators are derived by setting the EMS equations equal to the corresponding mean square from the ANOVA table and solving. And the proposed model is compared with the standard Gage R&R model.

Optimal Placement of the Phasor Measurement Units in Power System (전력계통의 페이저 측정기 최적배치)

  • Kim, Jae-Hun;Jo, Gi-Seon;Kim, Hoi-Chul;Shin, Jung-Rin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.7
    • /
    • pp.313-322
    • /
    • 2000
  • This paper presents optimal placement of minimal set of Phasor Measurement Units (PMU's) and observability analysis of the network with PMU's. In order to find a observable system, a symbolic method which directly assigns an appropriate symbol for measurement or pseudo-measurement to every entry of node-branch incidence matrix is proposed. It is much simpler and easier to analyze the observability of the network with PMU's than the conventional ones. For the optimal PMU placement problem, two approaches which are based on a modified Simulated-Annealing (SA) method and a Direct Combination method are proposed. Some case studies with IEEE sample system are made to show the performance of the proposed methods are almost alike and more effective than the conventional simulated-annealing method. It is also shown that the Direct Combination method is more effective than the modified simulated-annealing one in the sense of computation burden. The results of this study showed also that the accuracy of power system estimation and system observability can be improved the proposed PMU placements.

  • PDF

A Study on the Ultrasonic Measurement for Damage Evaluation of Power Plant Bearing (발전용 베어링 손상평가를 위한 초음파 측정 연구)

  • Lee, Sang-Guk
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1727-1732
    • /
    • 2004
  • For the purpose of monitoring by ultrasonic test of the ball bearing conditions in rotating machinery, a system for their diagnosis was developed. ultrasonic technique is used to detect abnormal conditions in the bearing system. And various data such as frequency spectrum, energy and amplitude of ultrasonic signals, and ultrasonic parameters were acquired during experiments with the simulated ball bearing system. Based on the above results and practical application for power plant, algorithms and judgement criteria for diagnosis system was established.

  • PDF

Computer Aided Measurement and Analysis of Body Sway Using Force Platform (힘판을 이용한 중심 동요의 자동측정에 관한 연구)

  • Jeong, Byeong-Yong;Park, Gyeong-Su
    • Journal of the Ergonomics Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.45-52
    • /
    • 1988
  • An instrumentation system for the automatic measurement of body sway has been developed. The system consists of a force platform, amplifiers, and data acquisition and display software, operating on a computer. We used only the force platform and electronic amplifying unit in Kistler Biomechanics System to obtain precise measurements, and developed the data acquisition and analysis software using an IBM PC With 12 bit A/D converter. The system can be used in various specialized disciplines, such as ergonomics, rehabilitation, neuromuscular control, as well as sprots biomechanics.

  • PDF

Design and Analysis of a State Feedback Controller for a Chain of Integrators System under Measurement Noise (측정에러가 있는 적분기 시스템에서의 상태 궤환 제어기 설계 및 분석)

  • Youn, Jae-Seung;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.969-974
    • /
    • 2010
  • In this paper, we propose a fault-tolerant controller for compensating measurement noise of feedback sensor. Because control systems operate via feedback sensor's signal, the measurement noise in sensor's signal results in performance degradation or even system failure. Therefore, control systems often demand on compensating measurement noise. Our controller is equipped with a compensator in order to reject or reduce the effect of measurement noise in feedback information. Our proposed method is verified via simulation and experiment for a Ball and Beam system.

Development of a 2D Posture Measurement System to Evaluate Musculoskeletal Workload (근골격계 부하 평가를 위한 2차원 자세 측정 시스템 개발)

  • Park, Sung-Joon;Park, Jae-Kyu;Choe, Jae-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.43-52
    • /
    • 2005
  • A two-dimensional posture measurement system was developed to evaluate the risks of work-related musculoskeletal disorders(MSDs) easily on various conditions of work. The posture measurement system is an essential tool to analyze the workload for preventing work-related musculoskeletal disorders. Although several posture measurement systems have been developed for workload assessment, some restrictions in industry still exist because of its difficulty on measuring work postures. In this study, an image recognition algorithm was developed based on a neural network method to measure work posture. Each joint angle of human body was automatically measured from the recognized images through the algorithm, and the measurement system makes it possible to evaluate the risks of work-related musculoskeletal disorders easily on various working conditions. The validation test on upper body postures was carried out to examine the accuracy of the measured joint angle data from the system, and the results showed good measuring performance for each joint angle. The differences between the joint angles measured directly and the angles measured by posture measurement software were not statistically significant. It is expected that the result help to properly estimate physical workload and can be used as a postural analysis system to evaluate the risk of work-related musculoskeletal disorders in industry.

Development of Measurement System for Harmonic Analysis of Electric Equipment (전기설비의 고조파 분석을 위한 측정 시스템의 개발)

  • Yoo, Jae-Geun;Lee, Sang-Ik;Jeon, Jeong-Chay
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.259-261
    • /
    • 2002
  • Recently, according to the spread of semiconductor applied technology like motor speed control contrivance, power conversion installation and so on, harmonic ingredients occurred in switching operation flow into a distribution system and increase voltage distortion of distribution system and bring on obstacles like damage, lowering of capability, false operation and so on of various electrical installation. So, in order to consider a countermeasure to limit occurrence quantity of harmonic source, harmonic interception and others, precision measurement and analysis on voltage, current, power, power factor, the each ingredient of harmonic order, the percentage of total harmonic distortion and so forth are needed. In this paper monitoring system to measure and analyze power quality connected with power harmonics was developed and it's performance is verified by measuring and analyzing three-phase voltage and current of R, S, T in the three-phase and four-wire system using the developed measurement system.

  • PDF

A Measurement System for Rounded Shoulder Posture using a Wearable Stretch Sensor

  • Nguyen, Manh Thang;Dang, Quoc Khanh;Kim, Younghoon;Chee, Youngjoon
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.10-15
    • /
    • 2018
  • In this paper, we present a wearable measurement system for monitoring rounded shoulders. The system contains a shoulder correction band and a stretch sensor that can correct and measure shoulder posture, respectively. The capacitance of the stretch sensor changes linearly according to changes in the shoulders. To verify measurement, a motion analysis system was used as the reference to compare the change in the rounded angles of the shoulders and the change in the stretch sensor's capacitance. The results indicated that there is a high correlation between the two changes and the system can be used as a monitoring device for rounded shoulders.

Analysis of the Shape of Gathered Skirts using a Three-Dimensional Measurement System (3차원 계측시스템을 이용한 개더스커트 형상 분석)

  • Jung Hee-Kyeong;Lee Myung-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.11
    • /
    • pp.1399-1409
    • /
    • 2005
  • The purpose of this study was to analyze the shape of gathered skirts using a three-dimensional measurement system. And in this experiment, I try to accumulate three-dimensional data of wearing model and to figure out analyzing method made by shape of clothes. The experimental design consists of two factorial designs. I set up three different kinds of fabrics, ratio of gathers. Therefore nine samples were made. The instrument and tools for three-dimensional measurement was whole body 3D scanner. Analysis program used in experiment is RapidForm 2004 PP1 and Pattern Design 2000. Data analysis utilizes SPSS WIN 10.0 Package. T-test to effect an inspection of evidence, there was difference about measurement times. One-way ANOVA to analysis effect of gather made by gathering conditions. The following results were obtained; 1. As a result of inspecting an error several times using a three-dimension measurement system, convinced data was obtained. 2. At front, distribution of gap amount was larger than back. And as ratio of gathers increased, distribution of gap amount showed regularly. 3. After analyzing horizontal sectional figure of skirts, as a height of skirt changed from waist to the bottom of skirts, the results showed as follows. While section width, section thickness, node width, node depth increased, node count decreased. 4. With the horizontal section levels of gather skirt, the silhouette on middle hip section was similar with the silhouette of body line. And as ratio of gathers around hip section increased, nodes showed regularly. At the bottom of skirts showed different nodes by different gathering condition.