• Title/Summary/Keyword: Measure theory

Search Result 982, Processing Time 0.03 seconds

Finite element based dynamic analysis of multilayer fibre composite sandwich plates with interlayer delaminations

  • Jayatilake, Indunil N.;Karunasena, Warna;Lokuge, Weena
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.15-28
    • /
    • 2016
  • Although the aircraft industry was the first to use fibre composites, now they are increasingly used in a range of structural applications such as flooring, decking, platforms and roofs. Interlayer delamination is a major failure mode which threatens the reliability of composite structures. Delamination can grow in size under increasing loads with time and hence leads to severe loss of structural integrity and stiffness reduction. Delamination reduces the natural frequency and as a consequence may result in resonance. Hence, the study of the effects of delamination on the free vibration behaviour of multilayer composite structures is imperative. The focus of this paper is to develop a 3D FE model and investigate the free vibration behaviour of fibre composite multilayer sandwich panels with interlayer delaminations. A series of parametric studies are conducted to assess the influence of various parameters of concern, using a commercially available finite element package. Additionally, selected points in the delaminated region are connected appropriately to simulate bolting as a remedial measure to fasten the delamination region in the aim of reducing the effects of delamination. First order shear deformation theory based plate elements have been used to model each sandwich layer. The findings suggest that the delamination size and the end fixity of the plate are the most important factors responsible for stiffness reduction due to delamination damage in composite laminates. It is also revealed that bolting the delaminated region can significantly reduce the natural frequency variation due to delamination thereby improving the dynamic performance.

A Review on Past Cases of Self-potential Surveys for Dikes and Embankments Considering Streaming Potential (흐름 전위 특성을 고려한 수리시설물에서의 자연 전위 탐사 사례 고찰)

  • Song, Seo Young;Cho, AHyun;Kang, Peter K.;Nam, Myung Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.1-17
    • /
    • 2021
  • Self-potential (SP) surveys measure naturally occurring differences in electrical potential in the absence of artificial sources and have been applied to various fields since the first application in mineral explorations. Among various causes of SP occurrences, streaming potential is generated by the flow of groundwater, and makes SP surveys suitable for the exploration of groundwater table fluctuation, fractures, sinkholes and landslide occurrences. Recently, there has been many studies that applied SP surveys to monitor water leakage through dikes and embankments. In this review paper, we first review the characteristics and theoretical backgrounds of streaming potential in saturated or unsaturated porous media to introduce it in the embankment among various application field. After the review of the background theory, we review the past cases of field SP surveys on dikes and embankments and also the characteristics of field streaming potential data in the surveys. Further, by analyzing past studies of qualitative as well as quantitative interpretation of SP survey data, we show the possibility of quantitative interpretation of streaming potential data obtained on dikes and embankments. Consequently, it is hope that this review paper helps researches on SP surveys on dikes and embankments, and provides basis for interpretation methods of the SP data to identify leaked area and further leakage rate (or permeability).

The Thickness of Recrystallization Layer and Mechanical Properties According to Extrusion Exit Temperature (압출 출구 온도에 따른 Al 6061 합금의 표면 재결정층 두께 변화 및 기계적 특성 변화)

  • Kim, S.B.;Park, T.H.;Kim, H.G.;Lee, S.M.;Kim, H.K.
    • Transactions of Materials Processing
    • /
    • v.30 no.5
    • /
    • pp.219-225
    • /
    • 2021
  • When extruding Al6061 alloys, deformation energy is deposited inside the extruded alloy depending on the deformation and the temperature of extrusion. This creates a Peripheral Coarse Grain (PCG) on the surface, where relatively more deformation energy. of the extruded alloy has been accumulated. Furthermore, since the deformation of materials continues while the materials recrystallize, it is important to examine the effect of deformation energy on dynamic recrystallization in the process of extruding Al alloys along with their microstructure. Prior studies explain the theory behind PCG growth though quantitative analysis on PCG growth of Al alloys during extrusion processes has not yet been addressed. This study aims to measure the generated PCG thickness which determines the correlation between extrusion outlet temperature and its effect on mechanical properties. Surface structure observations were performed using Optical Microscope (OM) and mechanical properties were evaluated through tensile strength and hardness measurement. Throughout this study, we endevoured to find the optimum condition of extrusion exit temperature of Al6061 and confirmed improved d reliability. This study describes the effect of the complex process variables such as exit temperature on the thickness of PCG layer for the Al6061 alloy using the 200 tons extrusion press. We therefore, discovered that the PCG layer thickness was 117 ㎛ at temperatures between 460 ℃ to 520 ℃.

Analysis of Self Loosening of Aiming Bolts in Vehicle Head Lamp (자동차 헤드램프 내의 에이밍 볼트의 풀림 해석 및 실험)

  • Moon, Ji-Seung;Baek, Hong;Park, Sang-Shin;Park, Jong-Myeong
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.65-70
    • /
    • 2019
  • Self-loosening of bolts owing to external forces occurs in several machines that are clamped by bolts and nuts. This study focuses on the self-loosening of the aiming bolt of the head lamp in a vehicle. It is important to prevent the aiming bolt from self-loosening as it has a decisive effect on the angle of the head lamp. A nut clamped with a bolt, known as a retainer, is made of plastic and has a partial screw thread. In addition, a transverse load has a considerable impact on the self-loosening of a bolt. We concentrate on the self-loosening of a bolt by a transverse load. The aim of this study is to define the limits of the external force that loosen the bolt. Based on the above conditions, we derive a theoretical equation and develop a numerical analysis program that can calculate the limiting forces for self-loosening. To verify the developed program, we design a test device that can measure the self-loosening by applying sliding forces to the aiming bolt. Using this method, we can draw the following conclusions. First, the developed testing device is suitable to prove the theory for calculating the self-loosening force. Second, the equation confirms the relationship of bolt self-loosening between resistance torque and shear force. Finally, the equation obtains the minimum value of the resistance torque required to decrease the change in the angle of the head lamp, thereby improving the possibility of increasing the stability of the head lamp.

Information Dissemination During the COVID-19 Pandemic in Bangladesh

  • Sayed, Abu;Haque, Md. Ziaul;Mahmud, Md. Rifat
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.4
    • /
    • pp.66-86
    • /
    • 2022
  • The main aim of this study is to identify the role of information dissemination on urban and rural citizens of Bangladesh during the COVID-19 pandemic and the role of misinformation in this process. The study also aimed at finding appropriate counter misinformation strategies regarding COVID-19. An online questionnaire was prepared to collect the viewpoints of the urban and rural citizens of Bangladesh regarding dissemination of information during COVID-19, misinformation regarding COVID-19, and counter misinformation strategies. Along with demographic and general information, a five-point Likert scale was used to measure COVID-19 related misinformation beliefs and how to counter them. Chi square tests were used to determine the association between current residency, information sources, the importance of information dissemination, reactions after getting COVID related information, and evaluative steps after getting information and before disseminating it. Additionally, nonparametric Mann-Whitney U and Kruskal-Wallis tests were conducted to know the significance of difference in respondents' assessment on COVID-19 related misinformation in terms of their demographic characteristics. Cronbach's alpha score was obtained to see the reliability of the questionnaire items. The current study reveals that both urban and rural citizens of Bangladesh are influenced by information dissemination regarding COVID-19 and they have lower level of misinformation belief. The respondents have differences in misinformation belief by different demographic groups. Respondents' educational status, information literacy, sources of getting information, and evaluative steps after getting information have significant differences in misinformation belief. The study also noticed the support of respondents for countering misinformation strategies regarding COVID-19.

The Effect of Global outsourcing on the Environment (글로벌 아웃소싱이 환경에 미치는 영향 분석)

  • Cho, Sung-Taek
    • International Area Studies Review
    • /
    • v.21 no.4
    • /
    • pp.65-83
    • /
    • 2017
  • As Global value chain(GVC) is deepening, the importance of intermediated good trade is growing in international trade issues. Such facts lead to much discussions about the relation between Global Outsourcing and pollution. This study analyzed the effect of Global outsourcing on Environment using the data including 21 industries for 2004-14. $CO_2$ intensity is used as a proxy for the environment variable and to measure Global outsourcing and I employed the method suggested by Feenstra and Hanson(1999), Amiti and Wei(2006). To examine the effect Global outsourcing on the Environment more precisely, this paper controlled the factors that can affect the environment level on the basis of the theory suggested by Copeland and Taylor(1994). In the methodology, System GMM is employed to solve endogenous problem. The results show that for overall industries, Global outsourcing effect cannot be identified and for polluting industries, the result is identical. However, Global outsourcing has a negative effect on the pollution level for China and developing countries. In other words, as Global outsourcing is increasing, the national pollution level is decreasing.

Assessing the Influence Radius of a Water Treatment System Installed in a Reservoir Using Tracer Experiment and 3D Numerical Simulation (추적자 실험 및 3차원 수치모의를 이용한 저수지 수처리 장치의 영향반경 평가)

  • Park, Hyung Seok;Lee, Eun Ju;Ji, Hyun Seo;Choi, Sun Hwa;Chun, Se Woong
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.3-12
    • /
    • 2018
  • The objective of this study was to evaluate the radius of influence of effluent of water treatment system developed for the purpose of improvement of reservoir water quality using fluorescent dye (Rhodamine-WT) tracer experiment and 3-D numerical model. The tracer experiment was carried out in a medium-sized agricultural reservoir with a storage capacity of $227,000m^3$ and an average depth of 1.6 m. A guideline with a total length of 160 m was installed at intervals of 10 m in the horizontal direction from the discharge part, and a Rhodamine measurement sensor (YSI 6130, measurement range $0-200{\mu}g/L$) was used to measure concentration changes in time, distance, and depth. Experimental design was established in advance through Jet theory and the diffusion process was simulated using ELCOM, a three dimensional hydraulic dynamics model. As a result of the study, the direct effect radius of the jet emitted from the applied water treatment system was about 50-70 m, and the radius of physical effect by the advection diffusion was judged to be 100-120 m. The numerical simulations of effluent advection-diffusion of the water treatment system using ELCOM showed very similar results to those of the impact radius analysis using the tracer experiment and jet flow empirical equations. The results provide valuable information on the spatial extent of the water quality improvement devices installed in the reservoir and the facility layout design.

Stress and fatigue analysis of major components under dynamic loads for a four-row tractor-mounted radish collector

  • Khine Myat Swe;Md Nasim Reza;Milon Chowdhury;Mohammod Ali;Sumaiya Islam;Sang-Hee Lee;Sun-Ok Chung;Soon Jung Hong
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.269-284
    • /
    • 2022
  • The development of radish collectors has the potential to increase radish yields while decreasing the time and dependence on human labor in a variety of field activities. Stress and fatigue analyses are essential to ensure the optimal design and machine life of any agricultural machinery. The objectives of this research were to analyze the stress and fatigue of major components of a tractor-mounted radish collector under dynamic load conditions in an effort to increase the design dependability and dimensions of the materials. An experiment was conducted to measure the shaft torque of stem-cutting and transferring conveyor motors using rotary torque sensors at different tractor ground speeds with and without a load. The Smith-Watson-Topper mean stress equation and the rain-flow counting technique were utilized to determine the required shear stress with the distribution of the fatigue life cycle. The severity of the operation was assessed using Miner's theory. All running conditions produced more than 107 of high cycle fatigue strength. Furthermore, the highest severity levels for motor shafts used for stem cutting and transferring and for transportation joints and cutting blades were 2.20, 4.24, 2.07, and 1.07, and 1.97, 3.81, 1.73, and 1.07, respectively, with and without a load condition, except for 5.24 for a winch motor shaft under a load. The stress and fatigue analysis presented in this study can aid in the selection of the most appropriate design parameters and material sizes for the successful construction of a tractor-mounted radish collector, which is currently under development.

Development of a School Multicultural Climate Scale (학교다문화분위기 척도개발 연구)

  • Ko, Kyung-Eun
    • Korean Journal of Social Welfare Studies
    • /
    • v.41 no.4
    • /
    • pp.345-368
    • /
    • 2010
  • The purpose of this study is to develop the School Multicultural Climate(SMC) scale for students and to evaluate its reliability and validity. This study comprises of both qualitative and quantitative research. Preliminary items were developed based on the theoretical literature and interviews with students. The scale was evaluated with students in grades 4 through 6 in the seven elementary schools. Exploratory factor analysis was determined that the scale was composed of four components: Equal Status, Mutual Cooperation, Friendly Relations, Supportive Norms. The scale demonstrated that Cronbach's alpha=.943 for the internal consistency of total items. And the standard error of the measurement, another way of evaluating reliability, was 3.33. Criteria-related validity was evaluated by showing that the differences of the students' recognition of the school multicultural climate level, which depend on the availability of the multiculture-related policy, was statistically significant. The correlation analysis for the convergent validity was performed with the theoretically related variables such as self esteem and school adjustment. It was found that the SMC scale was a reliable and valid measure for evaluating the multicultural climate level of elementary school.

A Risk Evaluation Method of Slope Failure Due to Rainfall using a Digital Terrain Model (수치지형모델을 이용한 강우시 사면 붕괴 위험도 평가에 관한 제안)

  • Chae, JongGil;Jung, MinSu;Torii, Nobuyuki;Okimura, Takashi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6C
    • /
    • pp.219-229
    • /
    • 2010
  • Slope failure in South Korea generally occurs by the localized heavy rain in a rainy season and typhoon, and it annually causes huge losses of both life and property because nearly 70% of territory in South Korea is covered with mountains. It is required to measure the risk of slope failure quantitatively before proper prevention methods are provided. However, there is no way to estimate the risk based on realtime rainfall, geological characteristics, and geotechnical engineering properties. This study presents the development of digital terrion model to predict slope stability using infinite slope stability theory combined with temporal groundwater change. Case studies were performed to investigate factors to affect slope stability in Japan.