• Title/Summary/Keyword: Measure curvature

Search Result 144, Processing Time 0.021 seconds

Characteristics of Critical Current Degradation with Bending Diameter of High Temperature Superconducting Cable (고온 초전도 케이블의 굽힘 직경에 따른 임계전류 저하 특성)

  • Kim Hae Joon;Kim J.H.;Cho J.W.;Sim K.D.;Bae J.H.;Kim H.J.;Seong K.C.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1067-1069
    • /
    • 2004
  • 22.9[kV]/50[MVA]/30[m] HTS transmission power cable has been developed and tested at Korea Electrotechnology Research Institute and LG Cable Company by 21 century center for applied superconductivity technology. It is necessary to measure of critical current degradations, AC loss, insulation test and etc at the HTS cable development. This paper is analyzed characteristics that critical current of HTS cable bending condition according to this paper. We will be able to decide the diameter of drum which HTS cable is wound around and minimum curvature radius of HTS cable from results of this research.

  • PDF

Design of Gaskets for Hydrogen Fuel Cells Using Taguchi Method (다구찌 기법을 이용한 수소 연료전지용 가스켓 설계)

  • Cheon, Kang-Min;An, Jun-Hyeon;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.66-72
    • /
    • 2022
  • The Mooney-Rivlin second order optimal strain energy function derived through uniaxial tensile test and analysis was applied to a gasket to confirm the internal stress and surface pressure generated during compression. The Taguchi method, a statistical technique, was used to design the optimum shape of the gasket, and through characteristic evaluation, the optimum shape of the gasket was obtained when the reference plane (T: 0.15 mm), contact surface (W: 1.00 mm), and curvature (R: 0.30 mm) were used. It was determined that the optimum shape yields a von Mises stress of 4.83 MPa, and the contact pressure stress is 20.14 MPa, which satisfies breakage and sealing requirements. In the future, we plan to manufacture a jig that can measure surface pressure to conduct comparative verification studies between the test results and analysis results.

Estimation of Dynamic Displacement and Characteristics of A Simple Beam from FBG Sensor Signals (FBG센서 응답을 이용한 단순보의 동적 변위 및 동특성 추정)

  • Choi, Eun Soo;Kang, Dong Hoon;Chung, Won Seok;Kim, Hak Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.503-514
    • /
    • 2006
  • FBG sensors are capable of measuring the strain of structures easily and more durably than electric resistance gauges. Thus, many researches are dedicated to the application for the response monitoring or non-destructive evaluation of structures using FBG sensors. Additionally, the measured strains at the top and bottom of a cross-section can be transformed into the curvature of the section, which can be used to calculate its vertical displacement. Hence, this study aims to measure the dynamic strain signals of a steel section simply supported beam and to estimate the dynamic displacement from the strain signals, after which the estimated displacement is com pared with the measured displacement. The dynamic characteristics (natural frequency, damping ratio and mode shape) of the beam are predicted from both the estimated and measured displacement signals, and from the strain time history of the FBG sensors. The predicted properties are compared with those of an analytical model of the beam. The estimated displacement. However, the predicted dynamic properties from both the estimated displacements and the measured strains are well-correlated with those from the measured displacement. It is therefore appreciated that the estimation of the dynamic properties of FBG sensor signals is reasonable. Especially, the strain signal of the FBG sensor was amplified at a higher-frequency region in comparison with the displacement estimation with higher-mode properties.

Development of the Fixed Slab Analogy Device for the Measurement of Stress Intensity Factor (응력확대계수 측정용 고정 슬랩상사 장치의 개발)

  • 정진석;최선호;황재석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.1999-2010
    • /
    • 1992
  • The fixed slab analogy device which can measure stress intensity factors(S.I.F) experimentally by slab analogy theory is developed in this paper. The margin of errors resulted from the new testing apparatus are between 0.02% and 8.25%. Therefore, it is assured that this one can be effectively used for the more accurate measurement of S.I.F.( $k_{I}$, $k_{I I}$) than conventional apparatus. The pitch of master grating used in this experiment is 0.1mm It is known that the ratio of the distance from crack tip to the crack length on obtaining the accurate stress intensity factor is between 0.4 and 0.7. The optimum curvature radius of slab is about 125mm. The thickness of slab(plate) used in the fixed slab analogy device is 0.05mm(P.V.C. ; E = 64 MN/ $m^{2}$, .nu.=0.38), which is proved to be suitable for the test. The optimum material for the frame(slab`s external boundary) is a alloy tool steel(SKS 5) plate and its thickness is 1mm. In this research, the rigid cracks are directly bonded to the slab surface by cyanoacrylate adhesive for the easiness of slab making and conformity to the practical crack figure. The material of rigid crack is thin steel plate. It is expected that the developed method can be used effectively for the analysis of $k_{I}$ and $k_{I I}$ of arbitrary shaped or distributed cracks.cks.

Flow Characteristics of Two-Dimensional Turbulent Stepped Wall Jet (2次元 亂流 Stepped Wall Jet 의 流動特性)

  • 부정숙;김경천;박진호;강창수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.732-742
    • /
    • 1985
  • Measurements of mean velocity and turbulence characteristics are obtained with a linearized constant temperature hot-wire anemometer in a two-dimensional turbulent jet discharging parallel to a flate. Wall static pressure distribution is also measure. The Reynolds number based on the jet nozzle width (D) is about 42,000 and the step height is 2.5D. The reattachment length is found to be 7.5D by using both wool tuft and oil methods. Upstream of the reattachment point, there exist double coherent structures and mean velocity, Reynolds stresses and triple product profiles are asymmetric about jet center line due to the influence of streamline curvature and recirculating flow region. Near the reattachment point, wall static pressure and turbulence quantities change its shape rapidly because of the large eddies by the solid wall. Especially, turbulence intensity has a maximum value in the reattachment regin, then decreases slowly in the redeveloping wall jet ragion. Downstream of X/D=14, a single large scale eddy structure is formed. Far downstream affer the reattachment(X/D.geq.18) mean velocity profile, the decay of maximum velocity and the variation of jet half width are nearly similar to those of plane wall jet, but the Reynolds stresses are higher than those of the latter.

Evaluation of Integral Seat Desk used in Universities based on KS/ISO Standard and Questionnaire Survey

  • Kee, Dohyung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.125-134
    • /
    • 2014
  • Objective: The purpose of this study is to evaluate integral seat desk used in universities through comparison of real dimension values of the desk with KS/ISO standard and questionnaire survey. Background: School furniture that helps students sit comfortably for longer periods of time and allows for better concentration on learning is important. However, seat and desk have been generally designed based on the industry practice rather than user's anthropometry, and seats and desks used in universities of Korea have not been ergonomically evaluated. Method: Real 13 dimensions of the desk used in K University were measured using tape measure and inclinometer, and the dimension values were compared to the KS standard of desk and chair for lecture room (KS G 4210) and ergonomic design principles found in relevant references. Subjective appropriacies and preference for the desk were investigated based on questionnaire survey, in which 121 (male: 91, female: 30) college students participated. Results: Several dimensions for the desk and chair investigated except desk depth and width, leg room width, seat width have not met the KS standard, but all dimensions satisfied ergonomic design principles available in references. The questionnaire survey revealed that appropriacies for desk surface size, seat pan depth, seat pan cushion and backrest curvature were under middle point of 3.0, and that those for the other dimensions showed higher scores exceeding 3.0. Conclusion: The integral seat desk widely used in universities showed some design problems in terms of standards of KS G 2010 and KS G 4210, and ergonomic design principles. Compared to the general desk with separated desk and seat, subjective preference on the integral seat desk was low. Application: This would be used as a valuable guideline when designing or choosing new integral seat desk with high satisfaction of students.

Influence of ductility of reinforcement on the plastic hinge formation (철근의 연성이 소성힌지 생성에 미치는 영향)

  • Park, Dae-Gyun;Cho, Jae-Yeol;Park, Sung-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.97-100
    • /
    • 2008
  • Subjected to seismic action causing large deformation of bridge columns, the plastic hinge region is commonly formed in the column end zone. The deformation capacity of a concrete column can be expressed by using plastic hinge length. The mechanical properties of high-strength reinforcing steel is different from that of normal-strength steel and the mechanical properties of steel will influence the plastic hinge formation. Therefore, in other to accurately predict the deformation of concrete column using high-strength steel, the plastic hinge length can be expressed as a function of the mechanical properties of steel such as the tensile to yield strength ratio and the strain at ultimate state. However, little research has been conducted into the effect of mechanical properties of steel on the plastic hinge length. It was difficult to measure the plastic hinge length from the test results. Therefore, the plastic hinge length of concrete columns was investigated from the curvature profile. A numerical approach was used to study the effect of various parameters on plastic hinge length. Based on the results of the numerical parametric study, a new expression for plastic hinge length was proposed.

  • PDF

Effect of Cutout Orientation on Stress Concentration of Perforated Plates with Various Cutouts and Bluntness

  • Woo, Jin-Ho;Na, Won-Bae
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.95-101
    • /
    • 2011
  • Perforated plates with cutouts (or holes) are widely used in structural members. These cutouts provide stress concentration in plates. Extensive studies have been carried out on stress concentration in perforated plates, which consider cutout shapes, boundary conditions, bluntness of cutouts, and more. This study presents stress concentration analyses of perforated plates with not only various cutouts and bluntness but also different cutout orientations. Especially, the effect of cutout orientation on stress concentration is emphasized since structural members have become more complicated recently. To obtain stress concentration patterns, a finite element program, ANSYS, is used. For the designated goal, three parameters are considered as follows: the shapes of polygonal cutouts (circle, triangle, and square), bluntness (a counter measure of radius ratio, r/R), and rotation of cutouts (${\theta}$). From the analyses, it is shown that, in general, as bluntness increases, the stress concentration increases, regardless of the shape and rotation. A more important finding is that the stress concentration increases as the cutouts become more oriented from the baseline, which is the positive horizontal axis (+x). This fact demonstrates that the orientation is also a relatively significant design factor to reduce stress concentration. In detail, in the case of the triangle cutout, orienting one side of the triangle cutout to be perpendicular to the applied tensile forces is preferable. Similarly, in the case of the square cutout, it is more advantageous to orient two sides of square cutout to be perpendicular to the applied tensile force. Therefore, at the design stage, determining the direction of a major tensile force is required. Then, by aligning those polygon cutouts properly, we can reduce stress concentration.

Shear Behavior Prediction of Reinforced Concrete Columns Using Transformation Angle Truss Model (변환각 트러스 모델에 의한 철근콘크리트 기둥의 전단거동 예측)

  • Kim Sang-Woo;Chai Hyee-Dae;Lee Jung-Yoon;Lee Bum-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.435-444
    • /
    • 2005
  • This paper predicted the shear behavior of reinforced concrete columns using Transformation Angle Truss Model (TATM) considered the effects of bending moment and axial force. Nine columns with various shear span- to-depth ratios and axial force ratios were tested to verify the theoretical results obtained from TATM. Fine linear displacement transducers (LVDT) were attached to a side of the column near the shear critical region to measure the curvature, the longitudinal and transverse axial deformations, and the shear deformation of the column. The test was terminated when the value of the applied load dropped to about $85\%$ of the maximum-recorded load in the post-peak descending branch. All the columns were failed in shear before yielding of the flexural steel. The shear strength and the stiffness of the columns increased, as the axial force increased and the shear span-to-depth ratio decreased. Shear stress-shear strain and shear stress-strain of shear reinforcement curves obtained from TATM were agreed well with the test results in comparison to other truss models (MCFT, RA-STM, and FA-STM).

A Study on Relationship between Lumbosacral Curvature and Neck-Waist Circumference on College Students in Seoul (서울지역 대학생들의 요천추 만곡과 목-허리둘레의 관계에 대한 연구)

  • Yang, Yo-Chan;Song, Eun-Mo;Kim, Koh-Woon;Cho, Jae-Heung;Song, Mi-Yeon
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.23 no.4
    • /
    • pp.169-176
    • /
    • 2013
  • Objectives To investigate correlation between anthropometric data (neck circumference (NC), waist circumference (WC), body mass index (BMI), and body shape indexes) and radiological parameters of lumbosacrum. Methods The data of college students living in Seoul (n=24) were analyzed retrospectively. Anthropometric data of NC, WC, and BMI were measured. Lumbar spine X-ray film was taken to measure lumbar lordotic angle, Ferguson's angle. To evaluate body shape of participants, three indexes of neck-to-waist ratio (NWR), neck-to-height ratio (NHR), and waist-to-height ratio (WHR) were used. Anthropometric data's correlations with radiological parameters of lumbosacrum were investigated. Results Anthropometric data of NC, WC, and BMI had no significant correlation with radiological parameters of lumbosacrum. NWR had significant positive correlation with lumbar lordotic angle and Ferguson's angle. NHR and WHR had no significant correlation with radiological parameters of lumbosacrum. Conclusions The results suggest that NWR-related fat distribution in neck has significant correlation with radiological parameters of lumbosacrum regardless of obesity.