• 제목/요약/키워드: Means of Using

검색결과 12,111건 처리시간 0.039초

방향성 기반 보간법과 비지역 평균 필터링에 의한 효과적인 CFA 영상 디모자이킹 알고리즘 (Effective Demosaicking Algorithm for CFA Images using Directional Interpolation and Nonlocal Means Filtering)

  • 김종호
    • 한국산학기술학회논문지
    • /
    • 제18권10호
    • /
    • pp.110-116
    • /
    • 2017
  • 본 논문에서는 단일 센서 기기를 통해 획득된 CFA (color filter array) 영상의 효과적인 디모자이킹(demosaicking)을 위하여 방향성 기반 보간법과 영상의 비지역 특성을 이용하는 방법을 제안한다. G 채널을 복원하기 위하여 수직 및 수평방향 뿐만 아니라 대각선 방향을 고려하고, 영상의 지역적 특성을 위하여 비교적 적은 수의 픽셀을 이용하여 보간한다. 이후, 영상의 비지역적 특성을 반영하여 에지 근처에서의 복원능력 및 색상오류 등에 의한 화질열화를 개선하기 위하여 보간된 픽셀에 NLM (nonlocal means) 필터링을 적용한다. R과 B 채널은 이미 복원된 G 채널의 정보를 이용하여 방향성 기반 보간법 및 NLM 필터링을 적용하여 복원한다. 채도가 높고 색상변화가 비교적 큰 McMaster 영상에 대해서 수행한 실험결과는 제안하는 디모자이킹 방법이 기존의 방법에 비해 PSNR 기반의 객관적 성능평가 결과가 우수하고, 주관적 화질 측면에서 에지 및 텍스처와 같은 영상의 구조를 잘 보존하고 색상오류 등과 같은 왜곡현상을 감소시켜 우수한 성능을 나타냄을 알 수 있다.

텍스트 분석을 이용한 코로나19 관련 국내 논문의 주제 및 감성에 관한 융합 연구 (A Convergence Study on the Topic and Sentiment of COVID19 Research in Korea Using Text Analysis)

  • 허성민;양지연
    • 한국융합학회논문지
    • /
    • 제12권4호
    • /
    • pp.31-42
    • /
    • 2021
  • 본 연구에서는 코로나19 관련 연구논문의 연구주제를 탐색하고 동향을 검토하고 있다. 또한 감성분석을 통해 부정적인 어조가 강한 경고가 되는 주제들을 알아본다. 잠재 디리슐레 할당(LDA)를 이용하여 총 8개의 토픽을 발견하였고, 이를 구조적 토픽 모델링(STM)과 비교하여 비교적 안정적인 결과임을 확인하였다. 또한 k-means 군집 알고리즘을 통해 각 토픽별로 세부 연구주제를 발견하였고 주성분 분석을 이용하여 이를 시각적으로 표현하였다. 감성분석을 통해 각 토픽별 긍정적, 부정적인 단어들을 살펴보고 감성점수를 계산하여 연구논문의 주된 어조를 파악하였는데, 특히 생물 의학 관련, 국제적 역학관계, 심리적 영향과 관련된 연구에서 부정적인 어조가 강한 것으로 나타나 해당 부문에 대해서 주의와 관심이 요구된다. 향후 연구자들이 연구의 방향성을 탐색하고 정책결정자들이 연구지원 사업을 결정하는데 기초자료로 활용될 수 있을 것이다.

주민등록번호 대체수단별 발급·이용 시 이용자 신원확인 및 인증절차 분석 연구 (A Study on the Analysis of User Identification and Authentication Procedures when Issuing and Using Alternative Means of Resident Registration Numbers)

  • 김종배
    • 문화기술의 융합
    • /
    • 제10권5호
    • /
    • pp.707-713
    • /
    • 2024
  • 본 논문은 주민등록번호 대체수단의 발급·이용 시 신원확인 및 인증절차에 대해 현황을 분석하고 문제점의 개선 방안을 제안한다. 본인확인서비스 이용 과정에서 이용자의 개인정보보호와 권리보장이 필요하지만 근래에 만연해 있는 본인확인서비스의 확대로 인해 무분별하게 본인확인을 요구하고 있으며, ISP들도 신원확인 및 인증절차의 문제점 개 없이 활용에만 그치고 있다. 결국 온라인 서비스 이용자들은 자신의 개인정보가 과도하게 제공되고 있으며, ISP들은 본인확인서비스 요구에 따른 과금이 발생하고 있고 결국 온라인 서비스에 그 비용이 부가되고 있다. 따라서 본 논문에서는 주민등록번호 대체수단 발급·이용 시 이용자의 신원확인 및 인증 절차의 현황을 분석하고 문제점 개선방안을 제안한다. 제안한 방안을 통해 온라인 서비스 이용자들의 개인정보보호와 ISP들의 비용 절감, 그리고 온라인 서비스의 활성화를 꾀할 수 있을 것이다.

논문 검색 결과의 효과적인 브라우징을 위한 단어 군집화 기반의 결과 내 군집화 기법 (A Search-Result Clustering Method based on Word Clustering for Effective Browsing of the Paper Retrieval Results)

  • 배경만;황재원;고영중;김종훈
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권3호
    • /
    • pp.214-221
    • /
    • 2010
  • 검색 결과 내 군집화(search-result clustering)는 검색 엔진으로부터 검색된 결과 내에서 비슷한 문서를 자동으로 군집화하는 기법이다. 본 논문에서는 논문 검색 서비스에 전문화된 새로운 결과 내 군집화 기법을 제안한다. 제안하는 시스템은 '범주체계생성기(Category Hierarchy Generation System)'와 '논문군집기(Paper Clustering System)'로 구성되어있다. '범주체계생생기'는 KOSEF의 연구 범주 체계를 이용하여 분야 시소러스라 불리는 범주 체계를 생성하고, K-means 알고리즘을 이용한 단어 군집화 알고리즘을 사용하여 분야 시소러스의 키워드 집합을 확장한다. '논문군집기'는 top-down 방식과 bottom-up 방식을 이용하여 각 논문의 범주를 결정한다. 제안하는 시스템은 논문 검색 서비스와 같은 전문 분야에 대한 검색 서비스에 유용하게 사용될 수 있을 것이다.

동작인식을 이용한 탁구 스윙 분석 (Analysis of Table Tennis Swing using Action Recognition)

  • 허건;하종은
    • 제어로봇시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.40-45
    • /
    • 2015
  • In this paper, we present an algorithm for the analysis of poses while playing table-tennis using action recognition. We use Kinect as the 3D sensor and 3D skeleton data provided by Kinect for further processing. We adopt a spherical coordinate system and feature selected using k-means clustering. We automatically detect the starting and ending frame and discriminate the action of table-tennis into two groups of forehand and backhand swing. Each swing is modeled using HMM(Hidden Markov Model) and we used a dataset composed of 200 sequences from two players. We can discriminate two types of table tennis swing in real-time. Also, it can provide analysis according to similarities found in good poses.

K-means 클러스터링 기반 소프트맥스 신경회로망 부분방전 패턴분류의 설계 : 분류기 구조의 비교연구 및 해석 (Design of Partial Discharge Pattern Classifier of Softmax Neural Networks Based on K-means Clustering : Comparative Studies and Analysis of Classifier Architecture)

  • 정병진;오성권
    • 전기학회논문지
    • /
    • 제67권1호
    • /
    • pp.114-123
    • /
    • 2018
  • This paper concerns a design and learning method of softmax function neural networks based on K-means clustering. The partial discharge data Information is preliminarily processed through simulation using an Epoxy Mica Coupling sensor and an internal Phase Resolved Partial Discharge Analysis algorithm. The obtained information is processed according to the characteristics of the pattern using a Motor Insulation Monitoring System program. At this time, the processed data are total 4 types that void discharge, corona discharge, surface discharge and slot discharge. The partial discharge data with high dimensional input variables are secondarily processed by principal component analysis method and reduced with keeping the characteristics of pattern as low dimensional input variables. And therefore, the pattern classifier processing speed exhibits improved effects. In addition, in the process of extracting the partial discharge data through the MIMS program, the magnitude of amplitude is divided into the maximum value and the average value, and two pattern characteristics are set and compared and analyzed. In the first half of the proposed partial discharge pattern classifier, the input and hidden layers are classified by using the K-means clustering method and the output of the hidden layer is obtained. In the latter part, the cross entropy error function is used for parameter learning between the hidden layer and the output layer. The final output layer is output as a normalized probability value between 0 and 1 using the softmax function. The advantage of using the softmax function is that it allows access and application of multiple class problems and stochastic interpretation. First of all, there is an advantage that one output value affects the remaining output value and its accompanying learning is accelerated. Also, to solve the overfitting problem, L2-normalization is applied. To prove the superiority of the proposed pattern classifier, we compare and analyze the classification rate with conventional radial basis function neural networks.

Design and Implementation of a Body Fat Classification Model using Human Body Size Data

  • Taejun Lee;Hakseong Kim;Hoekyung Jung
    • Journal of information and communication convergence engineering
    • /
    • 제21권2호
    • /
    • pp.110-116
    • /
    • 2023
  • Recently, as various examples of machine learning have been applied in the healthcare field, deep learning technology has been applied to various tasks, such as electrocardiogram examination and body composition analysis using wearable devices such as smart watches. To utilize deep learning, securing data is the most important procedure, where human intervention, such as data classification, is required. In this study, we propose a model that uses a clustering algorithm, namely, the K-means clustering, to label body fat according to gender and age considering body size aspects, such as chest circumference and waist circumference, and classifies body fat into five groups from high risk to low risk using a convolutional neural network (CNN). As a result of model validation, accuracy, precision, and recall results of more than 95% were obtained. Thus, rational decision making can be made in the field of healthcare or obesity analysis using the proposed method.

국부 확률을 이용한 데이터 분류에 관한 연구 (A Study on Data Clustering Method Using Local Probability)

  • 손창호;최원호;이재국
    • 제어로봇시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.46-51
    • /
    • 2007
  • In this paper, we propose a new data clustering method using local probability and hypothesis theory. To cluster the test data set we analyze the local area of the test data set using local probability distribution and decide the candidate class of the data set using mean standard deviation and variance etc. To decide each class of the test data, statistical hypothesis theory is applied to the decided candidate class of the test data set. For evaluating, the proposed classification method is compared to the conventional fuzzy c-mean method, k-means algorithm and Discriminator analysis algorithm. The simulation results show more accuracy than results of fuzzy c-mean method, k-means algorithm and Discriminator analysis algorithm.

RFM기법과 k-means 기법을 이용한 개인화 추천시스템의 개발 (Development of Personalized Recommendation System using RFM method and k-means Clustering)

  • 조영성;구미숙;류근호
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권6호
    • /
    • pp.163-172
    • /
    • 2012
  • 기존 추천시스템의 명시적((Explicit) 협력 필터링 방법은 실용화 되었으나 정확한 아이템의 속성이 반영되지 않는 문제와 희박성과 확장성 문제가 여전히 남아 있다. 본 논문에서는 실시간성과 민첩성이 요구되는 유비쿼터스 상거래에서 고객에게 번거로운 질의 응답 과정이 없이 묵시적인(Implicit) 방법을 이용하여 RFM(Recency, Frequency, Monetary)기법과 k-means 기법을 이용한 개인화 추천시스템을 제안한다. 구매 가능성이 높은 아이템을 추출하기 위해서 고객데이터와 구매이력 데이터를 기반으로 아이템의 속성 반영이 가능한 RFM기법과 k-means 클러스터링을 이용한다. 제안 방법으로 추천의 효율성이 높은 아이템 추천이 가능하도록 고객정보의 속성 변수의 특징 벡터가 적용된 클러스터링 작업과 군집내의 아이템 카테고리 선호도 계산 작업의 전처리를 수행한다. 성능평가를 위해 현업에서 사용하는 인터넷 화장품 아이템 쇼핑몰의 데이터를 기반으로 데이터 셋을 구성하여 기존 시스템과 비교 실험을 통해 성능을 평가하여 효용성과 타당성을 입증하였다.

K-Means Clustering을 활용한 냉수대 발생 분포에 관한 연구 (A Study on the Distribution of Cold Water Occurrence using K-Means Clustering)

  • 김범규;윤홍주;이준호
    • 한국전자통신학회논문지
    • /
    • 제16권2호
    • /
    • pp.371-378
    • /
    • 2021
  • 본 연구에서는 한국 남동해역에 발생하는 냉수대의 공간적인 분포를 구분하기 위해 2016 ~ 2018년의 고리, 양포의 해양 관측 부이 수온자료와 GHTSST Level 4 재분석 해수면 온도자료를 K-means clustering 기법을 활용하여 분석하였다. 부이자료는 남동해역에서 고리와 양포 지점의 수온변화 및 냉수대 발생을 파악하기 위해 활용하였다. 그 결과 냉수대 발생 시점에 고리와 양포의 수온이 동일하게 감소하였다. 이에 냉수대 발생시 SST의 변화를 보기 위해 수온의 역수와 SST의 분산을 비교하였다. 수온이 변화하는 시점에 SST의 분산도 증가하는 것을 나타내었는데 이를 통해 냉수대 발생시 해역의 SST의 수온분포에 변화가 있다는 것을 알 수 있었다. 냉수대 발생해역을 분류하기 위해 K-means clustering을 활용하였다. Elbow 기법을 활용하여 분류를 위한 최적의 K값을 찾아낸 후 분류를 진행한 결과 연안의 차가운 해수가 존재하는 지역을 찾아낼 수 있었다. 이를 통해 냉수대 발생해역의 공간적인 분포 및 확산범위를 추정하여 향후 냉수대로 인한 피해 파악 및 공간적인 확산 예측연구에 활용할 수 있을 것이라 판단된다.