• Title/Summary/Keyword: Meandering-pattern

Search Result 23, Processing Time 0.022 seconds

Stress-Sensors with High-Sensitivity Using the Combined Meandering-Patterns

  • Cho, Chun-Hyung;Cha, Ho-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • In this work, the combined meandering-pattern stress-sensors were presented in order to achieve the high sensitivity of stress sensors. Compared to the previous works, which have been using the single meandering-pattern stress-sensors, the sensitivity was approximately observed to increase by 30%~70%. Also, in this paper, more simple and convenient stress-measurement method was presented.

INVESTIGATION OF THE MEANDER PLANFORM DEVELOPMENT IN A LABORATORY CHANNEL

  • Yilmaz, L.;Singh, Vijay P.;Mishra, S.K.;Adrian, D.D.;Sansalone, J.J.
    • Water Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.177-193
    • /
    • 2002
  • Experiments were conducted in an initially straight laboratory alluvial channel to investigate channel meandering characteristics. The experimental observations revealed an empirical relation between three types of tortuosity ratios used for describing meandering characteristics. Furthermore, the Strauhal number was found to be higher for bed material with greater resistance to erosion than with lower resistance to erosion. The meandering characteristics were also investigated using the concept of buckling employed in solid mechanics and the concept of siphoning of fluid mechanics. The buckling of flow, attributable to the flow nonuniformity across the channel cross-section, was found to follow the same pattern as did meandering observed experimentally. The processes of expansion of meanders and cut-off can be explained using the concept of siphoning. The results of expanding meander planforms observed in four experimental tests supported the viability of these concepts.

  • PDF

A Study of Flow Characteristics in Meandering River (사행하천에서의 흐름특성 비교에 관한 연구)

  • Son, Ah-Long;Ryu, Jong-Hyun;Han, Kun-Yeun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.191-200
    • /
    • 2011
  • Levee failure cause the huge amount of damage to human and property. Overflow and erosion of levee are primary cause of a break in a levee but the analysis of breach pattern and impact is partially inadequate. The flow characteristics of meandering rivers are very important in field of river hydraulics that should be studied in practical viewpoints relating to river levee. In meandering the secondary flow that rotary direction is changed reciprocally occurs in three dimension is known. In this study flow characteristics of local river are considered and of meandering channels are analyzed using CCHE2D and FLOW3D. The stability and accuracy of models are examined comparing the measuring and analyzed data for the experimental channel and natural river(Namgang). Consequently, the flow characteristics in a meandering river are suggested precisely and it is essential that river levees having meandering river should be analyzed.

Numerical Simulation of Flow Characteristics and Channel Changes with Discharge in the Sharped Meandering Channel in the Naeseongcheon, Korea (내성천 급만곡부에서 유량 변화에 의한 흐름 및 하도변화 수치모의)

  • Jang, Chang-Lae
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.1
    • /
    • pp.24-33
    • /
    • 2017
  • This study investigates the flow characteristics and bed changes with discharge using a two-dimensional numerical model, Nays2DH. The water depth at the outer part of curved channel is formed deeper from the narrow part after passing through the curved part. The point bar is developed in the wide section and water depth is shallow in the inside of the curved section. The flow is concentrated in the outer pater of the meandering section, which leads to the deep water. In the downstream section where the straight line formed, the flow is concentrated at the center of the bed. Alternating deep water and shallow places are generated due to the continuous formation of meandering. These characteristics are formed by the influence of strong two-stream flow in meandering stream. The dimensionless tractive force is also large in the region where the flow velocity is concentrated. However, in the narrow and sharp meandering river reaches, the pattern of bed changes and the spatial distribution patterns of flow velocity and dimensionless tractive force are inconsistent in the narrow and sharp meandered reaches due to the strong secondary flow.

The Effects of Incised Meandering Valley and Lithological Differences on the Grain Size and Shape of Channel Bed Materials: A Case Study of the Upper and Middle Reaches of Gongneungcheon River (감입곡류 지형과 암질 차이가 하상 퇴적물 입경 및 형상에 미친 영향: 공릉천 중상류 구간을 사례로)

  • Chen, Hui;Kim, Jong Wook;Han, Min;Byun, Jongmin
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.1
    • /
    • pp.15-26
    • /
    • 2019
  • In this study, we investigated the grain size, lithological type, and shape of coarse bed materials in the upper and middle reaches of Gongneungcheon River. For this purpose, 11 sampling points were selected along the river. For 100 samples of the coarse bed materials at each point, three axes (long, intermediate, and short) of samples were measured, and their lithological types were also identified. By measuring grain size, the sphericity and flatness of samples were calculated. Finally, every particle was classified into four shape categories: sphere, disc, blade and rod. We found that the grain size in incised meandering reach is the largest. This is mainly due to the supply of coarse materials from steep valley sides along the meandering channel. According to the lithological analysis, all samples were identified as granite, gneiss and schist, and quartz. The proportion of granite decreased, whereas the proportion of gneiss and schist increased downstream. These patterns indicate that the bedrock distribution within the study area accounts for the downstream lithological variation of coarse bed materials. With regard to the grain shape, sphericity gradually decreased while flatness gradually increased downstream. In the case of the shape classification, unlike the general downstream pattern of grain shape, the proportion of the sphere type decreased and the proportion of the blade type increased downstream. Such a reversal change in the downstream direction turns out to be determined by the lithology (such as foliation, bedding and the pattern of weathering) of coarse bed materials.

An Experimental Study of Flow and Dispersion Characteristics in Meandering Channel (사행수로에서의 유속 및 분산특성에 관한 실험적 연구)

  • Park, Sung-Won;Seo, Il-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.799-802
    • /
    • 2008
  • General behaviors based on hydraulic characteristics of natural streams and channels have been recently analyzed and developed via various numerical models. However in the states of natural hydraulics, an experimental research must be performed simultaneously with the mathematical analysis due to effects of hydraulic properties such as meander, sediment, and so on. In this study based on 2-D advection-dispersion equation, flow and tracer experiments were performed in the S-curved meandering laboratory channel with a rectangular cross-section. The channel was equipped with instrument carriages which was equipped with an auto-traversing system to be used with velocity measuring sensors throughout the depth and breadth of the flow field. To measure concentration distribution of the salt solution was adjusted to that of the flume water by adding methanol and a red dye (KMnO4) was added to aid the visualization of the tracer cloud, the tracer was instantaneously injected into the flow as a full-depth vertical line source by the instantaneous injector and the initial concentration of the tracer was 100,000 mg/l. The secondary current as well as the primary flow pattern was analyzed to investigate the flow distribution in the meandering channels. The velocity distribution of the primary flow for all cases skewed toward the inner bank at the first bend, and was almost symmetric at the crossovers, and then shifted toward the inner bank again at the next alternating bend. Thus, one can clearly notice that the maximum velocity occurs taking the shortest course along the channel, irrespective of the flow conditions. The result of the tracer tests shows that pollutant clouds are spreading following the maximum velocity lines in each cases with various mixing patterns like superposition, separation, and stagnation of pollutant clouds. Flow characteristics in each cases performed in this study can be compared with tracer dispersion characteristics with using evaluation of longitudinal and transverse dispersion coefficients(LDC, TDC). As expected, LDC and TDC in meandering parts have been evaluated with increasing distribution and straight parts have effected to evaluate minimum of LDC and TDC due to symmetric flow patterns and attenuations of secondary flow.

  • PDF

A Prediction Model of Transverse Bed Slope in Meandering Rivers (사행하천(蛇行河川)의 횡방향(橫方向) 하상경사(河床傾斜)의 예측모형(豫測模型))

  • Hong, Chang Sun;Chung, Yong Tai
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.81-89
    • /
    • 1991
  • An interesting property of meandering river patterns is that they slowly deform, as bank erosion on one side of a channel and deposition on the other side result in the location of the channel. In this study we used a sine-generated meander pattern proposed by Langbein and Leopold(1966) to develop a solution of a linear, second-order differential equation of transverse bed slope(bed topography) proposed by Odgaard(1986). A new model for transverse bed slope(bed topography), that accounts for the phase lag and the influence of the width to depth aspect ratio, was developed in this study and compared with results of field measurements.

  • PDF

Satellite-altimeter-derived East Sea Surface Currents: Estimation, Description and Variability Pattern (인공위성 고도계 자료로 추정한 동해 표층해류와 공간분포 변동성)

  • Choi, Byoung-Ju;Byun, Do-Seong;Lee, Kang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.4
    • /
    • pp.225-242
    • /
    • 2012
  • This is the first attempt to produce simultaneous surface current field from satellite altimeter data for the entire East Sea and to provide surface current information to users with formal description. It is possible to estimate surface geostrophic current field in near real-time because satellite altimeters and coastal tide gauges supply sea level data for the whole East Sea. Strength and location of the major currents and meso-scale eddies can be identified from the estimated surface geostrophic current field. The mean locations of major surface currents were explicated relative to topographic, ocean-surface and undersea features with schematic representation of surface circulation. In order to demonstrate the practical use of this surface current information, exemplary descriptions of annual, seasonal and monthly mean surface geostrophic current distributions were presented. In order to objectively classify surface circulation patterns in the East Sea, empirical orthogonal function (EOF) analysis was performed on the estimated 16-year (1993-2008) surface current data. The first mode was associated with intensification or weakening of the East Korea Warm Current (EKWC) flowing northward along the east coast of Korea and of the anti-cyclonic circulation southwest of Yamato Basin. The second mode was associated with meandering paths of the EKWC in the southern East Sea with wavelength of 300 km. The first and second modes had inter-annual variations. The East Sea surface circulation was classified as inertial boundary current pattern, Tsushima Warm Current pattern, meandering pattern, and Offshore Branch pattern by the time coefficient of the first two EOF modes.

Flow Simulation in a Meandering Channel using a 2-dimensional Numerical Model (이차원 수치모형을 이용한 사행하도 흐름모의)

  • Lee, Haegyun;Lee, Namjoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.5
    • /
    • pp.485-492
    • /
    • 2013
  • The point sand bars of Hahoi Village on Nakdong River have undergone considerable changes including fluvial and vegetation characteristics due to flood regulation by the dams constructed upstream. In this study, the numerical fluvial/sediment and water quality model, KU-RLMS, is applied to the aquatic area near Hahoi Village (middle/upper region of the Nakdong River) for clarifying the mechanisms of changes in hydraulic and aquatic characteristics. The fixed-bed hydraulic experiment was carried out for horizontal two-dimensional numerical model. The numerical simulation reveals that flow is accelerated near the left bank of Booyongdae downstream of the Hahoi Village area. Circulatory flow pattern was observed at the right bank downstream of Hahoi Village. The simulation was in good agreement with the hydraulic/physical experiment. For the discharge of design flood, at the area of circulatory flow pattern, the superelevation of about 1.0 m at the right bank was predicted compared to the left bank of high flow velocity, which is also in good agreement with hydraulic experiment.

Unsteady RANS computations of turbulent flow in a high-amplitude meandering channel (고진폭 만곡수로에서 난류흐름의 비정상 RANS 수치모의)

  • Lee, Seungkyu;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.2
    • /
    • pp.89-97
    • /
    • 2017
  • Turbulent flow structure in the high amplitude meandering channel is complex due to secondary recirculation with helicoidal motions and shear layers formed by flow separation from the curved sidewall. In this work, the secondary flow and the superelevation of the water surface produced in the high-amplitude Kinoshita channel are reproduced by the unsteady Reynolds-averaged Navier-Stokes (RANS) computations using the VOF technique for resolving the variation of water surface elevation and three statistical turbulence models ($k-{\varepsilon}$, RNG $k-{\varepsilon}$, $k-{\omega}$ SST). The numerical results computed by a second-order accurate finite volume method are compared with an existing experimental measurement. Among applied turbulence models, $k-{\omega}$ SST model relatively well predicts overall distribution of the secondary recirculation in the Kinoshita channel, while all three models yield similar prediction of water superelevation transverse slope. The secondary recirculation driven by the radial acceleration in the upstream bend affects the flow structure in the downstream bend, which yields a pair of counter-rotating vortices at the bend apex. This complex flow pattern is reasonably well reproduced by the $k-{\omega}$ SST model. Both $k-{\varepsilon}$ based models fail to predict the clockwise-rotating vortex between a pair of counter-rotating vortices which was observed in the experiment. Regardless of applied turbulence models, the present computations using the VOF method appear to well reproduce the superelevation of water surface through the meandering channel.