• Title/Summary/Keyword: Mean-shift

Search Result 638, Processing Time 0.122 seconds

Improved Mean-Shift Tracking using Adoptive Mixture of Hue and Saturation (색상과 채도의 적응적 조합을 이용한 개선된 Mean-Shift 추적)

  • Park, Han-dong;Oh, Jeong-su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2417-2422
    • /
    • 2015
  • Mean-Shift tracking using hue has a problem that it fail in the object tracking when background has similar hue to the object. This paper proposes an improved Mean-Shift tracking algorithm using new data instead of a hue. The new data is generated by adaptive mixture of hue and saturation which have low interrelationship . That is, the proposed algorithm selects a main attribute of color that is able to distinguish the object and background well and a secondary one which don't, and places their upper 4 bits on upper 4 bits and lower 4 bits on the mixture data, respectively. The proposed algorithm properly tracks the object, keeping tracking error maximum 2.0~4.2 pixel and average 0.49~1.82 pixel, by selecting the saturation as the main attribute of color under tracking environment that background has similar hue to the object.

Bilateral Filtering-based Mean-Shift for Robust Face Tracking (양방향 필터 기반 Mean-Shift 기법을 이용한 강인한 얼굴추적)

  • Choi, Wan-Yong;Lee, Yoon-Hyung;Jeong, Mun-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.9
    • /
    • pp.1319-1324
    • /
    • 2013
  • The mean shift algorithm has achieved considerable success in object tracking due to its simplicity and robustness. It finds local minima of a similarity measure between the color histograms or kernel density estimates of the target and candidate image. However, it is sensitive to the noises due to objects or background having similar color distributions. In addition, occlusion by another object often causes a face region to change in size and position although a face region is a critical clue to perform face recognition or compute face orientation. We assume that depth and color are effective to separate a face from a background and a face from objects, respectively. From the assumption we devised a bilateral filter using color and depth and incorporate it into the mean-shift algorithm. We demonstrated the proposed method by some experiments.

Subjective Sleep Characteristics and Depression of shift Nurses (교대근무 간호사의 주관적 수면특성과 우울성향)

  • Jeong, Sook Hee
    • Korean Journal of Occupational Health Nursing
    • /
    • v.7 no.2
    • /
    • pp.155-163
    • /
    • 1998
  • In order to investigate the effects of rotating shift work on the subjective characteristics of sleep and mental depression questionnaire survey was carried out on 405 shift workers and 153 nonshift workers who were nurses employed. in three university hospital. The questionnaire forms used in this study were the self rating depression scale(SDS) and circadian type questionnaire(CTQ) factor R(rigidity/flexbility of sleeping habit) and factor V(inability/ability to overcome drowsiness). The results were as follows ; 1. Mean score of CTQ R in shift workers was significantly lower than that in nonshift workers, however, no significant difference in CTQ V was observed between two groups. 2. Mean score of SDS was significantly higher in shift workers(44.1) than in nonshift workers(39.8). 3. Mean self rating depression scale scores of pervasive affect, physiologic equivalents and psychological equivalents were significantly higher in shift workers than in nonshift workers. 4. In shift worker, mean SDS score was the highest in confusion and followed by diurnal variation, retardation, and indeciveness in the descending order. In nonshift worker, that score was the highest in decreased libido and followed by confusion, and indeciveness in the descending order. 5. Circadian type questionnaire scores was significantly and negatively correlated with significantly and negatively correlating with Self-rating depression scale scores(r=-0.473).

  • PDF

The motion estimation algorithm implemented by the color / shape information of the object in the real-time image (실시간 영상에서 물체의 색/모양 정보를 이용한 움직임 검출 알고리즘 구현)

  • Kim, Nam-Woo;Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2733-2737
    • /
    • 2014
  • Motion detection according to the movement and the change area detection method according to the background difference and the motion history image for use in a motion estimation technique using a real-time image, the motion detection method according to the optical flow, the back-projection of the histogram of the object to track for motion tracking At the heart of MeanShift center point of the object and the object to track, while used, the size, and the like due to the motion tracking algorithm CamShift, Kalman filter to track with direction. In this paper, we implemented the motion detection algorithm based on color and shape information of the object and verify.

Determination of the Resetting Time to the Process Mean Shift based on the Cpm+ (Cpm+ 기준에서의 공정평균이동에 대한 재조정 기간 결정)

  • Lee, Do-Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.110-117
    • /
    • 2018
  • Machines and facilities are physically or chemically degenerated by continuous usage. One of the results of this degeneration is the process mean shift. By the result of degeneration, non-conforming products and malfunction of machine occur. Therefore a periodic preventive resetting the process is necessary. This type of preventive action is called 'preventive maintenance policy.' Preventive maintenance presupposes that the preventive (resetting the process) cost is smaller than the cost of failure caused by the malfunction of machine. The process mean shift problem is a field of preventive maintenance. This field deals the interrelationship between the quality cost and the process resetting cost before machine breaks down. Quality cost is the sum of the non-conforming item cost and quality loss cost. Quality loss cost is due to the deviation between the quality characteristics from the target value. Under the process mean shift, the quality cost is increasing continuously whereas the process resetting cost is constant value. The objective function is total costs per unit wear, the decision variables are the wear limit (resetting period) and the initial process mean. Comparing the previous studies, we set the process variance as an increasing concave function and set the quality loss function as Cpm+ simultaneously. In the Cpm+, loss function has different cost coefficients according to the direction of the quality characteristics from target value. A numerical example is presented.

Skin Region Detection Using Histogram Approximation Based Mean Shift Algorithm (Mean Shift 알고리즘 기반의 히스토그램 근사화를 이용한 피부 영역 검출)

  • Byun, Ki-Won;Joo, Jae-Heum;Nam, Ki-Gon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.21-29
    • /
    • 2011
  • At existing skin detection methods using skin color information defined based on the prior knowldege, threshold value to be used at the stage of dividing the backround and the skin region was decided on a subjective point of view through experiments. Also, threshold value was selected in a passive manner according to their background and illumination environments in these existing methods. These existing methods displayed a drawback in that their performance was fully influenced by the threshold value estimated through repetitive experiments. To overcome the drawback of existing methods, this paper propose a skin region detection method using a histogram approximation based on the mean shift algorithm. The proposed method is to divide the background region and the skin region by using the mean shift method at the histogram of the skin-map of the input image generated by the comparison of the similarity with the standard skin color at the CbCr color space and actively finding the maximum value converged by brightness level. Since the histogram has a form of discontinuous function accumulated according to the brightness value of the pixel, it gets approximated as a Gaussian Mixture Model (GMM) using the Bezier Curve method. Thus, the proposed method detects the skin region by using the mean shift method and actively finding the maximum value which eventually becomes the dividing point, not by using the manually selected threshold value unlike other existing methods. This method detects the skin region high performance effectively through experiments.

Background Generation using Temporal and Spatial Information of Pixels (시간축과 공간축 화소 정보를 이용한 배경 생성)

  • Cho, Sang-Hyun;Kang, Hang-Bong
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.15-22
    • /
    • 2010
  • Background generation is very important for accurate object tracking in video surveillance systems. Traditional background generation techniques have some problems with non-moving objects for longer periods. To overcome this problem, we propose a newbackground generation method using mean-shift and Fast Marching Method (FMM) to use pixel information along temporal and spatial dimensions. The mode of pixel value density along time axis is estimated by mean-shift algorithm and spatial information is evaluated by FMM, and then they are used together to generate a desirable background in the existence of non-moving objects during longer period. Experimental results show that our proposed method is more efficient than the traditional method.

Skin Region Detection Using a Mean Shift Algorithm Based on the Histogram Approximation

  • Byun, Ki-Won;Nam, Ki-Gon;Ye, Soo-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • In conventional, skin detection methods using for skin color definitions is based on prior knowledge. By experimentation, the threshold value for dividing the background from the skin region is determined subjectively. A drawback of such techniques is that their performance is dependent on a threshold value which is estimated from repeated experiments. To overcome this, the present paper introduces a skin region detection method. This method uses a histogram approximation based on the mean shift algorithm. This proposed method applies the mean shift procedure to a histogram of a skin map of the input image. It is generated by comparing with the standard skin colors in the $C_bC_r$ color space. It divides the background from the skin region by selecting the maximum value according to the brightness level. As the histogram has the form of a discontinuous function. It is accumulated according to the brightness values of the pixels. It is then, approximated by a Gaussian mixture model (GMM) using the Bezier curve technique. Thus, the proposed method detects the skin region using the mean shift procedure to determine a maximum value. Rather than using a manually selected threshold value, as in existing techniques this becomes the dividing point. Experiments confirm that the new procedure effectively detects the skin region.

Automatic Source Classification Algorithm using Mean-Shift Clustering and stepwise merging in Color Image (컬러영상에서 Mean-Shift 군집화와 단계별 병합 방법을 이용한 자동 원료 선별 알고리즘)

  • Kim, Sang-Jun;Jang, JiHyeon;Ko, ByoungChul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1597-1599
    • /
    • 2015
  • 본 논문에서는 곡물이나 광석 등의 원료들 중에서 양품 및 불량품을 검출하기 위해, Color CCD 카메라로 촬영한 원료영상에서 Mean-Shift 클러스터링 알고리즘과 단계별 병합 방법을 제안하고 있다. 먼저 원료 학습 영상에서 배경을 제거하고 영상 색 분포정도를 기준으로 모폴로지를 이용하여 영상의 전경맵을 얻는다. 전경맵 영상에 대해서 Mean-Shift 군집화 알고리즘을 적용하여 영상을 N개의 군집으로 나누고, 단계별로 위치 근접성, 색상대푯값 유사성을 비교하여 비슷한 군집끼리 통합한다. 이렇게 통합된 원료 객체는 영상채널마다의 연관관계를 반영할 수 있도록 RG/GB/BR의 2차원 컬러분포도로 표현한다. 원료 객체별로 변환된 2차원 컬러 분포도에서 분포의 주성분의 기울기와 타원들을 생성한다. 객체별 분포 타원은 테스트 원료 영상데이터에서 양품과 불량품을 검출하는 임계값이 된다. 본 논문에서 제안한 방법으로 다양한 원료영상에 실험한 결과, 기존 선별방식에 비해 사용자의 인위적 조작이 적고 정확한 원료 선별 결과를 얻을 수 있었다.

Determination of Resetting Time to the Process Mean Shift with Failure (고장을 고려한 공정평균 이동에 대한 조정시기 결정)

  • Lee, Do-Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.145-152
    • /
    • 2019
  • All machines deteriorate in performance over time. The phenomenon that causes such performance degradation is called deterioration. Due to the deterioration, the process mean of the machine shifts, process variance increases due to the expansion of separate interval, and the failure rate of the machine increases. The maintenance model is a matter of determining the timing of preventive maintenance that minimizes the total cost per wear between the relation to the increasing production cost and the decreasing maintenance cost. The essential requirement of this model is that the preventive maintenance cost is less than the failure maintenance cost. In the process mean shift model, determining the resetting timing due to increasing production costs is the same as the maintenance model. In determining the timing of machine adjustments, there are two differences between the models. First, the process mean shift model excludes failure from the model. This model is limited to the period during the operation of the machine. Second, in the maintenance model, the production cost is set as a general function of the operating time. But in the process mean shift model, the production cost is set as a probability functions associated with the product. In the production system, the maintenance cost of the equipment and the production cost due to the non-confirming items and the quality loss cost are always occurring simultaneously. So it is reasonable that the failure and process mean shift should be dealt with at the same time in determining the maintenance time. This study proposes a model that integrates both of them. In order to reflect the actual production system more accurately, this integrated model includes the items of process variance function and the loss function according to wear level.