• Title/Summary/Keyword: Mean-Velocity Ratio

Search Result 298, Processing Time 0.025 seconds

Comparative study of analytical models of single-cell tornado vortices based on simulation data with different swirl ratios

  • Han Zhang;Hao Wang;Zhenqing Liu;Zidong Xu;Boo Cheong Khoo;Changqing Du
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.161-174
    • /
    • 2023
  • The analytical model of tornado vortices plays an essential role in tornado wind description and tornado-resistant design of civil structures. However, there is still a lack of guidance for the selection and application of tornado analytical models since they are different from each other. For single-cell tornado vortices, this study conducts a comparative study on the velocity characteristics of the analytical models based on numerically simulated tornado-like vortices (TLV). The single-cell stage TLV is first generated by Large-eddy simulations (LES). The spatial distribution of the three-dimensional mean velocity of the typical analytical tornado models is then investigated by comparison to the TLV with different swirl ratios. Finally, key parameters are given as functions of swirl ratio for the direct application of analytical tornado models to generate full-scale tornado wind field. Results show that the height of the maximum radial mean velocity is more appropriate to be defined as the boundary layer thickness of the TLV than the height of the maximum tangential mean velocity. The TLV velocity within the boundary layer can be well estimated by the analytical model. Simple fitted results show that the full-scale maximum radial and tangential mean velocity increase linearly with the swirl ratio, while the radius and height corresponding to the position of these two velocities decrease non-linearly with the swirl ratio.

Combustion Characteristics of Methane-Air Mixture in a Constant Volume Combustion Chamber(1): Homogeneous Charge (정적연소기에서의 메탄-공기 혼합기의 연소특성(1) : 균질급기)

  • 최승환;전충환;장연준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.48-57
    • /
    • 2003
  • A cylindrical constant volume combustion chamber was used to investigate the flow characteristics at spark plug and the combustion characteristics of homogeneous charge methane-air mixture under various initial pressure, excess air ratio and ignition times in quiescent mixture. The flow characteristics such as mean velocity and turbulence intensity was analyzed by hot wire anemometer. Combustion pressure development measured by piezoelectric pressure transducer and flame propagation acquired by ICCD camera were used to investigate the effect of initial pressure, excess air ratio and ignition times on pressure, combustion duration, flame speed and burning velocity. Mean velocity and turbulence intensity had the maximum value at 200 or 300ms and then decreased to near 0 value gradually after 3 seconds. Combustion duration, flame speed and burning velocity were observed to be promoted with excess air ratio of 1.1, lower initial pressure and ignition time of 300ms.

The Influences of Factors on Turbulence Intensity in Combustion Chamber (연소실내의 난류강도에 미치는 각종 인자의 영향)

  • 한성빈;이상준;이종태;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.793-804
    • /
    • 1994
  • Turbulence intensity caused by piston movement was almost as same tendency as the piston speed. The turbulence intensity was increased from 0.39m/s to 0.79m/s when mean piston speed increased from 2.33m/s to 4.67m/s. In this case the maximum turbulence intensity caused by piston speed was decreased about 82 percent near the top dead center at the end of compression stroke. The maximum turbulence intensity was created from 12m/s to 22m/s when inlet flow velocity was increased from 22m/s to 45m/s. Also turbulence intensity caused by inlet flow velocity was linearly increased from 0.97m/s at top dead center at the end of compression stroke. The ratio of turbulence intensity and mean inlet flow velocity was about 3 percent for inlet flow velocity.

A Study on Maximum and Mean Velocity Relationships with Varied Channel Slopes and Sediment (유사가 있는 경우와 수로경사가 변화하는 경우의 최대유속과 평균유속과의 관계에 관한 연구)

  • Choo, Tai-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.154-159
    • /
    • 2008
  • This study proposes how to decide mean velocity which is one of the very important and efficient discharge measurement in water resources area. In order to achieve this goal, Chiu's velocity distribution equation recently developed from the probability and entropy concepts is used to establish, analyze and compare a linkage between the mean velocity obtained from the Manning's equation which is well known in the world. Besides, it becomes clear that a channel cross section also has a propensity to establish and maintain an equilibrium state that can be measured and classified by a function of entropy M, ratio of mean and maximum velocities irrespective of including sediment or varied channel slope. Therefore, The linkage to be established in this study can be used to compute the cross sectional velocity distribution with the maximum velocity.

Development of 2-frame PTV system and its application to a channel flow (2-프레임 PTV 시스템의 개발 및 채널유동에의 응용)

  • Baek, Seung-Jo;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.874-887
    • /
    • 1998
  • A 2-frame PTV (particle tracking velocimetry) system using the concept of match probability between two consequent image frames has been developed to obtain instantaneous velocity fields. The overall 2-frame PTV system including image pre-processing, tracking algorithm and post-processing routine was implemented to apply to real flows. The developed 2-frame PTV system has several advantages such as high recovery ratio of velocity vectors, low error ratio and small computational time compared with the conventional 4-frame PTV and the FFT-based cross-correlation PIV technique. The 2-frame PTV system was applied to a turbulent channel flow over a rectangular block to check its reliability and usefulness. Total 96 sequential image frames have been captured and processed to get both mean and fluctuating velocity vector fields over the recirculating region. The mean velocity and turbulent intensity profiles were well agreed with hte LDV measurements in the separated region behind the block. Time-averaged reattachment length is about 6.3 times of the block height.

Interaction of turbulences with non-breaking divergent waves in an open channel

  • Hwang, Ayoung;Seok, Woochan;Lee, Sang Bong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.35-49
    • /
    • 2021
  • This paper presents a direct numerical simulation of turbulent flows over a bump in an open channel to examine the turbulence characteristics near divergent waves emanating from the bump and to investigate the interaction of the turbulences with the divergent waves. To verify the reliability of the simulations, the mean velocity profile and root-mean-square of velocity fluctuations are compared with previous data. The anisotropic invariant maps show that the ratio of the streamwise to spanwise velocity fluctuations plays an important role in characterizing the anisotropic nature of the separated shear layer behind the bump in the vicinity of the free surface. The vortex identification discloses a large-scale streamwise vortical structure from the mean velocity field and a cluster of small coherent structures from the instantaneous velocity field, which are responsible for the anisotropic characteristics of the turbulence beneath the free surface.

Effect of the Swirler Angle and Aspect Ratio of Nozzle on the Mean Velocity and SMD of Twin Sprays (노즐의 스월러각과 형상비가 이중분무의 평균속도와 입경의 크기에 미치는 영향)

  • Kim, Young-Jin;Jung, Ji-Won;Choi, Gyoung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1459-1466
    • /
    • 2004
  • The purpose of this study is to investigate the effect of swirler angle and the aspect ratio of swirl chamber of nozzle on the characteristics of single and twin spray. The characteristics of sprays have been investigated by measuring the spray angle, droplet size and velocity. Visualization of spray was conducted to obtain the spray angle and breakup process. The spray characteristics such as droplet size and velocity were measured by Phase Doppler Anemometry(PDA). It was found that the spray angle was increased with increasing the swirler angle. For both sprays, the axial velocity and SMD were decreased with increasing the swirler angle. It was also shown that the axial velocity and SMD were decreased with increasing the aspect ratio of swirl chamber, but for the twin spray, the axial velocity and SMD were not influenced significantly by the changing the aspect ratio of swirl chamber. The effect of swirler angle on the spray characteristics was greater than the aspect ratio of swirl chamber for single spray. The nozzle pitch was one of the important factors affecting the spray characteristics of twin spray.

A Study on the Near Wake of a Square Cylinder Using Particle Image Velocimetry ( I )- Mean Flow Field - (PIV기법을 이용한 정사각 실린더의 근접후류에 관한 연구 (I) - 평균유동장 -)

  • Lee, Man-Bok;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1408-1416
    • /
    • 2001
  • Mean flow fields in the near wake of a square cylinder have been studied experimentally using a Particle Image Velocimetry (PIV). Ensemble-averaged velocity fields are successfully measured fur the square cylinder wake including the reverse flow region which arises many difficulties in accurate measurement by using conventional techniques, Experiments are performed at two free stream velocities of U$\_$$\infty$/ = 1.27m/s and 3.03m/s. The corresponding Reynolds numbers based on the free-stream velocity and cylinder diameter are 1600 and 3900, respectively. The intensity of free-stream turbulence is less than 1%, the blockage ratio (D/H) is 6.6% and the aspect ratio (W/D) is 40. The effect of Reynolds number on the near wake of a square cylinder has been investigated by the global mean velocity and instantaneous velocity fields. The most striking feature is that the length of the recirculating region increases with increasing Reynolds number, which turns out totally reverse trend compared with those observed in the circular cylinder wake at the same range of Reynolds number. Fer the case of higher Reynolds number, the mean velocity data agree well with those of relevant existing data obtained at much higher Reynolds numbers, which reflects the general aspect of sharp-edged bluff body wake.

Shear wave velocity of sands subject to large strain triaxial loading

  • Teachavorasinskun, Supot;Pongvithayapanu, Pulpong
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.713-723
    • /
    • 2016
  • Shear wave velocities of three selected sandy soils subject to drained triaxial compression test were continuously measured using the bender elements. The shear wave velocity during isotropic compression, as widely recognized, increased as confining pressure increased and they were correlated well. However, during drained shearing, the mean effective stress could no further provide a suitable correlation. The shear wave velocity during this stage was almost constant with respect to the mean effective stress. The vertical stress was found to be more favorable at this stage (since confining stress was kept constant). When sample was attained its peak stress, the shear wave velocity reduced and deviated from the previously existed trend line. This was probably caused by the non-uniformity induced by the formation of shear band. Subsequently, void ratios computed based on external measurements could not provide reasonable fitting to the initial stage of post-peak shear wave velocity. At very large strain levels after shear band formation, the digital images revealed that sample may internally re-arrange itself to be in a more uniform loose stage. This final stage void ratio estimated based on the proposed correlation derived during pre-peak state was close to the value of the maximum void ratio.

Effects of knee flexor isokinetic training on Knee muscles strength and walking speed in hemiplegia (뇌졸중 환자에서 슬관절 굴근의 등속성운동이 슬관절 근력 및 보행에 미치는 영향)

  • Jang, Moon-Heon
    • Journal of Korean Physical Therapy Science
    • /
    • v.7 no.2
    • /
    • pp.711-725
    • /
    • 2000
  • The purpose of this study was to determine the effects of knee flexor isokinetic training on the mean peak torque of knee muscles and hamstrings-to-quadriceps ratio(H/Q ratio) in hemiplegia able to walk independently for more than 10 meters, to analyze the effect of torque increasing on functional aspects; fatigability and ambulation times, also. Forty-one adult subjects with hemiplegia secondary to a stroke partipated in this study. All participants were in/out patients at the College of Medicine, Pocheon CHA University, Pundang CHA General Hospital. The patients were allocated to two groups: one group exclusively for isokinetic maximal voluntary knee flexor training at $150^{\circ}$/sec(n=20) and the other exclusively for isokinetic maximal voluntary knee flexor training from $30^{\circ}$/sec to $150^{\circ}$/sec (n=21) gradually. The allocation was performed according to patient age, sex, affected side to minimize imbalance between the two training groups. Training was carried out from February 14th, 2000 to April 15th, 2000. Analysis of the data was done by means of t-test, x2-test, paired t-test, ANOVA, and multiple regression analysis. The results of this study were as follows: 1. There were no significant differences between the two groups in mean peak torque of knee muscles and relative decreases in knee extensor mean peak torque with increased knee flexor velocities before training (P<.05). 2.There was no significant differences between the two groups in the H/Q ratio, and no relative increases with increased knee flexor velocities before training. 3. there were significant changes in mean peak torque in group A after training(P<.05), but no significant differences as the velocity increased 4.there were significant changes in mean peak torque in group B after training(P<.05), but no significant differences as the velocity increased 5.there were no significant differences between the two groups, and no significant differences in mean peak torque increase rate between the groups with increased knee flexor velocities after training 6.H/Q ratio increased with increased knee flexor velocities between the two groups, but not statistically And there was no significant differences between the groups with increased knee flexor velocities 7.After training, Ambulation time and its decreasing rate decreased significantly in group B (P<.05) 8Before and after training, there was no significant differences between the groups in the fatiguability 9. In the multiple regression analysis, mean peak torque increase rate of the knee extensor and flexor were higher in group B than A(P<.05), and significantly higher with increased knee flexor velocities (P<.05) Also, training method influenced on Ambulation times decreases significantly(P<.05). Results indicated that knee flexor isokinetic training was effective to knee extensor and flexor mean peak torque increase in the hemiplegia able to walk independently for more than 10 meters. Therefore, we were able to conclude that gradual training from low to high velocity was more effective in the increase of mean peak torque of knee joint and decrease of Ambulation times than training only at high velocity.

  • PDF