• Title/Summary/Keyword: Mean grain size

Search Result 313, Processing Time 0.03 seconds

Characteristics of the Sedimentary Environment in Yoja Bay in the Summer of 1998 (1998년 하계 여자만의 저질환경 특성)

  • 허회권;김도현;안승환;박경원
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.2
    • /
    • pp.227-235
    • /
    • 2000
  • As a part of basic investigation to Fishery Purge Project for the Special Administrative in Chollanamdo Province, the sedimentary environmental characteristics of Yoja Bay at 15 stations were studied. The analysis was carried out in July, 1998, through studies of Loss On Ignition (LOI) by depth, Total Sulfide (T-5), Chemical Oxygen Demand (COD) concentrations and Grain-size distribution. The LOI value was found to be 6.20-12.20% (mean of 8.89%), with the neighboring Sunhakri and Haksanri areas showing slightly higher values. These values were similar to the LOI values observed in the Hansan-Koje Bay and Jinju Bay areas on the southern coast of Korea. T-S and COD concentrations were found to be, respectively, 0.060-0.104 mg/gㆍd (mean of 0.052 mg/gㆍd) and 5.53-29.71 mg/gㆍd(mean of 13.24 mg/gㆍd), not exceeding eutrophication limits. T-S concentration was especially high at stations close to the central areas of the bay and inland areas, which caused by organic matter input from the nearby agricultural areas. COD concentration was very high at stations nearby the bay entrance and Doonbyungdo, but the mean value was lower than that of Hansan-Koje Bay. This leads us to believe that the level of pollution in Yoja Bay is not significant. The prevailing sediment composition was mud, consisting of 61.38% silt and 34.87% clay. [Sediments in Yoja Bay, Loss On Ignition, Total Sulfide, Chemical Oxygen Demand, Grain-Size Distribution].

  • PDF

Sedimentary Environments, Geochemical Characteristics of Sediments and River waters, Hwasun-cheon (화순천의 퇴적환경 및 퇴적물과 하천수의 지구화학적 특성)

  • 오강호;고영구;김주용;김해경
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.881-895
    • /
    • 2002
  • Sediments and river waters form the channel of Hwasun-cheon were studied in sedimentological size and geochemical analyses of metallic elements for the purposes of identification of depositional environments and geochemical characteristics. The sizes of sediments are assigned to pebble to coarse sand in mean size and polymodal in distribution. And the sediments are poorly to very poorly sorted and positively skewed. According to the grain size distributions of the sediments, the Hwasun-cheon belongs to gravel-bed river on the basis of the grain size distribution of the sediments. The behaviors of metallic elements in the sediments mainly depend on not grain size distribution but the geology connected with geomorphological reliefs near the stream. Contamination indices(CI) of Zn, Cu and Pb are 2.83 to 6.96 with average 4.31 in the sediments. Hwasun-cheon is assigned to general stream type in accordance with water quality of physical factors and chemical characteristics by Piper's diagram. Though meaningful values of BOD, T-N, T-P were locally depicted near Masan-ri, Hwasun-eup and Jiseok-cheon areas, artificial metal concentration do not represent in the most area of the stream. Sediments and river water are considered that the relatively more or less high metallic contents in the stream are originated from coal mine and urban area.

Species Composition and Community Structure of Macrobenthos during Fall on the Dokdo Coast, Korea (가을철 독도 연안에 출현하는 대형저서동물의 종 조성 및 군집 구조)

  • Kang, Su Min;Lee, Hyung-Gon;Kim, Sang Lyeol;Choi, Jin-Woo;Park, Chan Hong;Yu, Ok Hwan
    • Ocean and Polar Research
    • /
    • v.41 no.2
    • /
    • pp.47-61
    • /
    • 2019
  • The Dokdo coast is known for its high biodiversity. However, few studies have examined the biodiversity and macrobenthic community on the subtidal soft-bottom. Therefore, we collected macrobenthos (> 1 mm) using a Smith-McIntyre grab ($0.1m^2$) at 15 stations along the Dokdo coast in September 2016. The sediments consisted of badly sorted (1.7) coarse sand with gravel and the mean sediment grain size was $-0.4{\phi}$. In total, 177 macrobenthic species were collected; their mean density was $1,566ind./m^2$. The number of species and density of macrobenthic fauna decreased significantly with the mean grain size. The dominant species were the amphipods Melita denticulata (16.5%) and Melita shimizui (5.5%), polychaete Salvatoria clavata (5.4%), bivalve Glycymeris aspersa (4.4%), and ophiuroid Ophionereis dubia (4.3%). The dominant macrobenthos species on the subtidal soft-bottom differed from the coastal areas of the East Sea, suggesting that the difference in the sediment grain size affected the macrobenthos. Cluster analysis was performed to divide the study area into four groups, and environmental factors which correlated with species composition and distribution in the study area were the combination of the four parameters of salinity, dissolved oxygen, total organic carbon and depth. A future seasonal investigation is needed to understand the species composition and characteristics of the Dokdo macrobenthos.

A simple approach to simulate the size distribution of suspended sediment (부유사 입경분포 모의를 위한 간편법)

  • Kwon, Minhyuck;Byun, Jisun;Son, Minwoo
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.347-357
    • /
    • 2024
  • Numerous prior studies have delineated the size distribution of noncohesive sediment in suspension, focusing on mean size and standard deviation. However, suspensions comprise a heterogeneous mixture of sediment particles of varying sizes. The transport dynamics of suspended sediment in turbulent flow are intimately tied to settling velocities calculated based on size and density. Consequently, understanding the grain size distribution becomes paramount in comprehending sediment transport phenomena for noncohesive sediment. This study aims to introduce a straightforward modeling approach for simulating the grain size distribution of suspended sediment amidst turbulence. Leveraging insights into the contrast between cohesive and noncohesive sediment, we have meticulously revised a stochastic flocculation model originally designed for cohesive sediment to aptly simulate the grain size distribution of noncohesive sediment in suspension. The efficacy of our approach is corroborated through a meticulous comparison between experimental data and the grain size distribution simulated by our newly proposed model. Through numerical simulations, we unveil that the modulation of grain size distribution of suspended sediment is contingent upon the sediment transport capacity of the carrier fluid. Hence, we deduce that our simplified approach to simulating the grain size distribution of suspended sediment, integrated with a sediment transport model, serves as a robust framework for elucidating the pivotal bulk properties of sediment transport.

Evaluation of translucency of monolithic zirconia and framework zirconia materials

  • Tuncel, Ilkin;Turp, Isil;Usumez, Aslihan
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.3
    • /
    • pp.181-186
    • /
    • 2016
  • PURPOSE. The opacity of zirconia is an esthetic disadvantage that hinders achieving natural and shade-matched restorations. The aim of this study was to evaluate the translucency of non-colored and colored framework zirconia and monolithic zirconia. MATERIALS AND METHODS. The three groups tested were: non-colored framework zirconia, colored framework zirconia with the A3 shade according to Vita Classic Scale, and monolithic zirconia (n=5). The specimens were fabricated in the dimensions of $15{\times}12{\times}0.5mm$. A spectrophotometer was used to measure the contrast ratio, which is indicative of translucency. Three measurements were made to obtain the contrast ratios of the materials over a white background ($L^*w$) and a black background ($L^*b$). The data were analyzed using the one-way analysis of variance and Tukey HSD tests. One specimen from each group was chosen for scanning electron microscope analysis. The determined areas of the SEM images were divided by the number of grains in order to calculate the mean grain size. RESULTS. Statistically significant differences were observed among all groups (P<.05). Non-colored zirconia had the highest translucency with a contrast ratio of 0.75, while monolithic zirconia had the lowest translucency with a contrast ratio of 0.8. The mean grain sizes of the non-colored, colored, and monolithic zirconia were 233, 256, and 361 nm, respectively. CONCLUSION. The translucency of the zirconia was affected by the coloring procedure and the grain size. Although monolithic zirconia may not be the best esthetic material for the anterior region, it may serve as an alternative in the posterior region for the bilayered zirconia restorations.

The Distribution Characteristics of Grain Size and Organic Matters of Surface Sediments from the Nakdong-Goryeong Mid-watershed (낙동·고령 중권역의 표층 퇴적물 입도 조성 및 유기물질 분포 특성 변화)

  • Kim, Shin;Ahn, Jungmin;Kim, Hyounggeun;Kwon, Heongak;Kim, Gyeonghoon;Shin, Dongseok;Yang, Deukseok
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.411-423
    • /
    • 2018
  • To investigate the distribution characteristics of grain size and organic matter of surface sediments from the Nakdong-Goryeong Mid-watershed, surface sediments were collected and analyzed. The samples were collected from six sited at four different times between May 2013 and May 2014. The were analyzed for grain size, water content, ignition loss, chemical oxygen demand, total organic carbon and total nitrogen. The surface sediments were mainly composed of medium sand (mean 44.7%) and coarse sand (mean 32.8%) and became coarser in May 2014. Fine sediments at the site NG-2 were poorly sorted and positively skewed, and occur in a tributary environment that is relatively low-energy compared with the other sites. The water content at the studied sites (15.3 ~ 34.9%) averaged 20.25%, and ignition loss (0.4 ~ 5.8%) and total nitrogen (274 ~ 2493 mg/kg) averaged 1.33% and, 696 mg/kg, respectively. These values indicated that the sediments were not seriously contaminated when compared with the sediment pollution evaluation standard of the National Institute of Environmental Research. The chemical oxygen demand (mean 0.17%) was at the non-polluted level compared with United States Environmental Protection Agency sediment quality standards. The total organic carbon (mean 0.18%) at all sites except site NG-2 (lowest effect level) was the no effect level of the Ontario sediment quality guidelines. The COD/IL (0.02 ~ 0.20) and C/N (0.73 ~ 6.76) were less than 1 and 10, respectively. Organic matter in the study area produced naturally from aquatic organisms. Results of principal component analysis showed that fine sediments (very fine sand and silt) were significantly affected by organic matters (ignition loss, chemical oxygen demand, total organic carbon and total nitrogen). In addition, the highest organic matters content in the study area occurred at the site with the finest sediments (NG-2).

Electron Scattering at Grain Boundaries in Tungsten Thin Films

  • Choe, Du-Ho;Kim, Byeong-Jun;Lee, Seung-Hun;Jeong, Seong-Hun;Kim, Do-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.243.2-243.2
    • /
    • 2016
  • Tungsten (W) is recently gaining attention as a potential candidate to replace Cu in semiconductor metallization due to its expected improvement in material reliability and reduced resistivity size effect. In this study, the impact of electron scattering at grain boundaries in a polycrystalline W thin film was investigated. Two nominally 300 nm-thick films, a (110)-oriented single crystal film and a (110)-textured polycrystalline W film, were prepared onto (11-20) Al2O3 substrate and thermally oxidized Si substrate, respectively in identical fabrication conditions. The lateral grain size for the polycrystalline film was determined to be $119{\pm}7nm$ by TEM-based orientation mapping technique. The film thickness was chosen to significantly exceed the electron mean free path in W (16.1 and 77.7 nm at 293 and 4.2 K, respectively), which allows the impact of surface scattering on film resistivity to be negligible. Then, the difference in the resistivity of the two films can be attributed to grain boundary scattering. quantitative analyses were performed by employing the Mayadas-Shatzkes (MS) model, where the grain boundary reflection coefficient was determined to be $0.42{\pm}0.02$ and $0.40{\pm}0.02$ at 293 K and 4.2 K, respectively.

  • PDF

Mixed Carbonate-Detrital Sediments on the Southeastern Continental Shelf of Korea (한반도 동해 남부 대륙붕에 분포하는 탄산질-쇄설성분 혼합 퇴적물에 대한 연구)

  • Choi, Jin-Yong
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.493-499
    • /
    • 1997
  • Grain size analysis have been made for the carbonate-detrital mixed sediments on the continental shelf off the southeastern coast of Korea. The detrital components are well-sorted with mean grain size between 2-3 phi. The detrital components are thought to be deposited in the beach environment during the glacial times when the sea level was low, representing typical 'relict' sediments. Most of the carbonate components consist of shell fragments, and are deeply weathered. They are also interpreted as the relict components that were deposited in the shallow marine environment. The carbonate fraction are coarser-grained and poorly sorted compared to the detrital component. The carbonate components are thought to have experienced the continuous environmental control of fragmentation and selective size sorting after the deposition.

  • PDF

Inheritance of Grain Weight and Size of a High Yielding Japonica cultivar, Sobibyeo (자포니카 다수성 품종 소비벼의 입중과 입형의 유전)

  • Tae Hwan Noh
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.3
    • /
    • pp.142-146
    • /
    • 2003
  • To obtain information on the inheritance of grain weight and grain size of japonica cultivar, Sobibyeo which has high yielding potential and large grain in rice, the genetic variation, heritability and phenotypic correlation of 1,000 grain weight, grain length, width and thickness were investigated in two crosses, Iksan 429/Sobibyeo and Iksan 430/Sobibyeo. The gram characteristics of $\textrm{F}_1$ hybrids exceeded mid-parental values, while grain length: width ratio was intermediate between the parents. In $\textrm{F}_2$ populations, the average grain length, width and thickness were intermediate as mid-parental values, but grain weight exceeded the mid-parental values. In $\textrm{F}_2$ populations of Iksan 429/Sobibyeo and Iksan 430/Sobibyeo, mean 1,000 grain weights were 24.86g and 25.04 g on the average, and ranged 18.4g-32.2g and 19.5g-33.4g, respectively. The segregation mode for grain weight was regarded as a nearly normal distribution in two crosses of $\textrm{F}_2$ populations. Estimates of broad sense heritabilities for grain weight in Iksan 429/Sobibyeo and Iksan 430/Sobibyeo were high as 89.00% and 89.06%, and grain length showed the highest heritability among grain characteristics as 97.45% and 97.35%, respectively. Grain weight was highly correlated with grain length, width and thickness, and grain length was highly correlated with grain width and thickness. These grain characteristics were apparently controlled by polygenes. Accordingly, these traits will be readily improved through selection in the early segregating generations.

Spatial distribution patterns of the surficial sediments in the tidal river, Gongneungcheon (공릉천 감조구간에 나타나는 표층퇴적물의 공간적 분포 특성)

  • CHOI, Yeoung Seon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.203-212
    • /
    • 2011
  • The objective of this paper is to identify the present-day surficial sediment distribution patterns of the tidal river, Gongneungcheon, through the grain size and statistical analysis. Four major findings of this study are as follows; First, the composition of sediments over the study area are mainly silt in texture. Second, the surficial sediment distribution reveals that grain size becomes coarser as they approach seawards not only in summer but also in winter. It can be concluded that tidal flows play a significant role, especially in winter, in the distribution of surficial sediments in Gongneungcheon. However, samples obtained in summer were relatively small in mean size and showed better sorting compared to those obtained in winter. Third, the mean sizes of the samples on the transects decrease as the distance from the channel increases. Finally, the artificial structure such as a floodgate affects the distribution of the sediments.