• Title/Summary/Keyword: Mean Flow Coefficient

Search Result 344, Processing Time 0.024 seconds

Determination and preconcentration of Cu(II) using microcrystalline p-Dichlorobenzene loaded with salicylaldoxime (Salicylaldoxime이 내포된 p-Dichlorobenzene 미세결정을 이용한 Cu(II)의 예비농축 및 정량)

  • Lee, Ha-Na;Choi, Hee-Seon
    • Analytical Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.240-246
    • /
    • 2010
  • A technique for the determination of trace Cu(II) in various real samples by FAAS after the column preconcentration onto p-dichlorobenzene-SA adsorbent, which is microcrystalline p-dichlorobenzene loaded with salicylaldoxime (SA) has been developed. Several experimental conditions such as pH of the sample solution, the amount of chelating agent salicylaldoxime, the amount of adsorbent p-dichlorobenzene-SA, and flow rate of sample solution were optimized. The interfering effects of various concomitant ions were investigated. $CN^-$ interfered more seriously than any other ions. However, the interference by $1\;{\mu}g\;mL^{-1}\;CN^-$ could be overcome completely by controlling the concentration of Ni(II) to $20\;{\mu}g\;mL^{-1}$. The linear range, correlation coefficient ($R^2$) and detection limit obtained by this technique were $3.0\sim100\;ng\;mL^{-1}$, 0.9901, and $3.1\;ng\;mL^{-1}$, respectively. For validating this technique, the aqueous samples (wastewater, reservoir water and stream water) and the food samples (orange juice, fresh egg and skim milk) were used. Recovery yields of 93~104% were obtained. These measured mean values were not differents from ICP-MS data at 95% confidence level. The good results were obtained from the experiments using the rice flour certified reference material (CRM) sample. Based on the experimental results, it was found that this technique could be applied to the preconcentration and determination of Cu(II) for various real samples.

The Effect of Body Composition on Pulmonary Function

  • Park, Jung-Eun;Chung, Jin-Hong;Lee, Kwan-Ho;Shin, Kyeong-Cheol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.5
    • /
    • pp.433-440
    • /
    • 2012
  • Background: The pulmonary function test is the most basic test method to diagnosis lung disease. The purpose of this study was to research the correlation of the body mass index (BMI), the fat percentage of the body mass (fat%), the muscle mass, the fat-free mass (FFM) and the fat-free mass index (FFMI), waist-hip ratio (WHR), on the forced expiratory volume curve. Methods: Between March and April 2009, a total of 291 subjects were enrolled. There were 152 men and 139 female (mean age, $46.3{\pm}9.92$ years), and they were measured for the following: forced vital capacity (FVC), forced expiratory volume at 1 second ($FEV_1$), and forced expiratory flow during the middle half of the FVC ($FEF_{25-75}$) from the forced expiratory volume curve by the spirometry, and the body composition by the bioelectrical impedance method. Correlation and a multiple linear regression, between the body composition and pulmonary function, were used. Results: BMI and fat% had no correlation with FVC, $FEV_1$ in male, but FFMI showed a positive correlation. In contrast, BMI and fat% had correlation with FVC, $FEV_1$ in female, but FFMI showed no correlation. Both male and female, FVC and $FEV_1$ had a negative correlation with WHR (male, FVC r=-0.327, $FEV_1$ r=-0.36; p<0.05; female, FVC r=-0.175, $FEV_1$ r=-0.213; p<0.05). In a multiple linear regression of considering the body composition of the total group, FVC explained FFM, BMI, and FFMI in order ($r^2$=0.579, 0.657, 0.663). $FEV_1$ was explained only fat% ($r^2$=0.011), and $FEF_{25-75}$ was explained muscle mass, FFMI, FFM ($r^2$=0.126, 0.138, 0.148). Conclusion: The BMI, fat%, muscle mass, FFM, FFMI, WHR have significant association with pulmonary function but $r^2$ (adjusted coefficient of determination) were not high enough for explaining lung function.

Evaluation of the Impact of Land Surface Condition Changes on Soil Moisture Field Evolution (지표면 조건의 변화에 따른 토양수분의 변화 평가)

  • Yu, Cheol-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.795-806
    • /
    • 1998
  • Soil moisture is affected by regional climate, soil characteristics and land surface condition, etc,. Especially, the changes in land surface condition is more than other factors, which is mainly due to rapid urbanization and industrialization. This study is to evaluate how the change of land surface condition impacts on soil moisture field evolution using a simple model of soil moisture dynamics. For the quantification of soil moisture field, the first half of the paper is spared for the statistical characterization based on the first- and second-order statistics of Washita '92 and Monsoon '90 data. The second half is for evaluating the impact of land cover changes through simulation study using a model for soil moisture dynamics. The model parameters, the loss rate and the diffusion coefficient, have been estimated using the observed data statistics, where the changes of surface conditions are considered into the model by applying various parameter sets with different second-order statistics. This study is concentrated on evaluating the impact due to the changes of land surface condition variability. It is because we could easily quantify the impact of the changes of its areal mean based on the linear reservoir concept. As a result of the study, we found; (1)as the variability of land surface condition, increases, the soil moisture field dries up more easily, (2)as the variabilit y of the soil moisture field is the highest at the beginning of rainfall and decreases as time goes on to show the variability of land surface condition, (3)the diffusion effect due to surface runoff or water flow through the top soil layer is limited to a period of surface runoff and its overall impact is small compared to that of the loss rate field.

  • PDF

Opto-Electrochemical Sensing Device Based on Long-Period Grating Coated with Boron-Doped Diamond Thin Film

  • Bogdanowicz, Robert;Sobaszek, Michał;Ficek, Mateusz;Gnyba, Marcin;Ryl, Jacek;Siuzdak, Katarzyna;Bock, Wojtek J.;Smietana, Mateusz
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.705-710
    • /
    • 2015
  • The fabrication process of thin boron-doped nanocrystalline diamond (B-NCD) microelectrodes on fused silica single mode optical fiber cladding has been investigated. The B-NCD films were deposited on the fibers using Microwave Plasma Assisted Chemical Vapor Deposition (MW PA CVD) at glass substrate temperature of 475 ℃. We have obtained homogenous, continuous and polycrystalline surface morphology with high sp3 content in B-NCD films and mean grain size in the range of 100-250 nm. The films deposited on the glass reference samples exhibit high refractive index (n=2.05 at λ=550 nm) and low extinction coefficient. Furthermore, cyclic voltammograms (CV) were recorded to determine the electrochemical window and reaction reversibility at the B-NCD fiber-based electrode. CV measurements in aqueous media consisting of 5 mM K3[Fe(CN)6] in 0.5 M Na2SO4 demonstrated a width of the electrochemical window up to 1.03 V and relatively fast kinetics expressed by a redox peak splitting below 500 mV. Moreover, thanks to high-n B-NCD overlay, the coated fibers can be also used for enhancing the sensitivity of long-period gratings (LPGs) induced in the fiber. The LPG is capable of measuring variations in refractive index of the surrounding liquid by tracing the shift in resonance appearing in the transmitted spectrum. Possible combined CV and LPG-based measurements are discussed in this work.

Analysis and Prediction for Spatial Distribution of Functional Feeding Groups of Aquatic Insects in the Geum River (금강 수계 수서곤충 섭식기능군의 공간분포 분석 및 예측)

  • Kim, Ki-Dong;Park, Young-Jun;Nam, Sang-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.99-118
    • /
    • 2012
  • The aim of this study is to define a correlation between spatial distribution characteristics of FFG(Functional Feeding Groups) of aquatic insects and related environmental factors in the Geum River based on the theory of RCC(River Continuum Concept). For that objective we had used SMRA(Stepwise Multiple Regression Analysis) method to analyze close relationship between the distribution of aquatic insects and the physical and chemical factors that may affect their inhabiting environment in the study area. And then, a probabilistic method named Frequency Ratio Model(FRM) and spatial analysis function of GIS were applied to produce a predictive distribution map of biota community considering their distribution characteristics according to the environmental factors as related variables. As a result of SMRA, the values of decision coefficient for factors of elevation, stream width, flow velocity, conductivity, temperature and percentage of sand showed higher than 0.5. Therefore these 6 environmental factors were considered as major factors that might affect the distribution characteristics of aquatic insects. Finally, we had calculated RMSE(Root Mean Square Error) between the predicted distribution map and prior survey database from other researches to verify the result of this study. The values of RMSE were calculated from 0.1892 to 0.4242 according to each FFG so we could find out a high reliability of this study. The results of this study might be used to develop a new estimation method for aquatic ecosystem with macro invertebrate community and also be used as preliminary data for conservation and restoration of stream habitats.

Combined 1D/2D Inundation Simulation of Riverside Farmland using HEC-RAS (HEC-RAS를 이용한 하천변 농경지의 1, 2차원 연계 침수 모의)

  • Jun, Sang Min;Song, Jung-Hun;Choi, Soon-Kun;Lee, Kyung-Do;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.135-147
    • /
    • 2018
  • The objective of this study was to analyze the characteristics of combined 1D/2D inundation simulation of riverside farmland using the Hydrologic Engineering Center - River Analysis System (HEC-RAS). We compared and analyzed inundation simulation results between 1D and combined 1D/2D hydraulic simulation using HEC-RAS. Calibration and validation of stream stage were performed using three rainfall events. The coefficient of determination ($R^2$) and root mean square error (RMSE) between simulated and observed stream stage were 0.935 - 0.957 and 0.250 m - 0.283 m in calibration and validation, respectively. The inundation area showed no significant difference in 1D and combined 1D/2D simulation ($8.48km^2$ in 1D simulation, $8.75km^2$ in combined 1D/2D simulation). The average inundation depth by 1D simulation was 1.4 m deeper than combined 1D/2D simulation. In the lower inundation depth, the inundation area by combined 1D/2D simulation was larger than inundation area by 1D simulation. As the inundation depth increased, the inundation area by 1D simulation became wider. In the case of the 1D/2D combined simulation, low elevation areas along the river bank were inundated widely. Compared to 1D/2D combined simulation, the flood radius in some sections was longer in 1D simulation. In the 1D analysis, because the low altitude riverside farmlands are also assumed to stream, it is calculated that riverside farmlands have the same stage as the mainstream when the stream is overflowed. Therefore, the inundation area seems to be overestimated in those sections. In other regions, the inundation areas tend to be broken depending on overflow by each stream cross-section. In the case of river flooding, the overflow is expected to flow to the lower area depending on the terrain, such as the results of the combined 1D/2D simulation. It is concluded that the results of combined 1D/2D inundation simulation reflected the topographical characteristics of low-lying farmland.

Diffusion Tensor-Derived Properties of Benign Oligemia, True "at Risk" Penumbra, and Infarct Core during the First Three Hours of Stroke Onset: A Rat Model

  • Chiu, Fang-Ying;Kuo, Duen-Pang;Chen, Yung-Chieh;Kao, Yu-Chieh;Chung, Hsiao-Wen;Chen, Cheng-Yu
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1161-1171
    • /
    • 2018
  • Objective: The aim of this study was to investigate diffusion tensor (DT) imaging-derived properties of benign oligemia, true "at risk" penumbra (TP), and the infarct core (IC) during the first 3 hours of stroke onset. Materials and Methods: The study was approved by the local animal care and use committee. DT imaging data were obtained from 14 rats after permanent middle cerebral artery occlusion (pMCAO) using a 7T magnetic resonance scanner (Bruker) in room air. Relative cerebral blood flow and apparent diffusion coefficient (ADC) maps were generated to define oligemia, TP, IC, and normal tissue (NT) every 30 minutes up to 3 hours. Relative fractional anisotropy (rFA), pure anisotropy (rq), diffusion magnitude (rL), ADC (rADC), axial diffusivity (rAD), and radial diffusivity (rRD) values were derived by comparison with the contralateral normal brain. Results: The mean volume of oligemia was $24.7{\pm}14.1mm^3$, that of TP was $81.3{\pm}62.6mm^3$, and that of IC was $123.0{\pm}85.2mm^3$ at 30 minutes after pMCAO. rFA showed an initial paradoxical 10% increase in IC and TP, and declined afterward. The rq, rL, rADC, rAD, and rRD showed an initial discrepant decrease in IC (from -24% to -36%) as compared with TP (from -7% to -13%). Significant differences (p < 0.05) in metrics, except rFA, were found between tissue subtypes in the first 2.5 hours. The rq demonstrated the best overall performance in discriminating TP from IC (accuracy = 92.6%, area under curve = 0.93) and the optimal cutoff value was -33.90%. The metric values for oligemia and NT remained similar at all time points. Conclusion: Benign oligemia is small and remains microstructurally normal under pMCAO. TP and IC show a distinct evolution of DT-derived properties within the first 3 hours of stroke onset, and are thus potentially useful in predicting the fate of ischemic brain.

Performance evaluation of hyperspectral bathymetry method for morphological mapping in a large river confluence (초분광수심법 기반 대하천 합류부 하상측정 성능 평가)

  • Kim, Dongsu;Seo, Youngcheol;You, Hojun;Gwon, Yeonghwa
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.3
    • /
    • pp.195-210
    • /
    • 2023
  • Additional deposition and erosion in large rivers in South Korea have continued to occur toward morphological stabilization after massive dredging through the four major river restoration project, subsequently requiring precise bathymetry monitoring. Hyperspectral bathymetry method has increasingly been highlighted as an alternative way to estimate bathymetry with high spatial resolution in shallow depth for replacing classical intrusive direct measurement techniques. This study introduced the conventional Optimal Band Ratio Analysis (OBRA) of hyperspectral bathymetry method, and evaluated the performance in a domestic large river in normal turbid and flow condition. Maximum measurable depth was estimated by applying correlation coefficient and root mean square error (RMSE) produced during OBRA with cascadedly applying cut-off depth, where the consequent hyperspectral bathymetry map excluded the region over the derived maximum measurable depth. Also non-linearity was considered in building relation between optimal band and depth. We applied the method to the Nakdong and Hwang River confluence as a large river case and obtained the following features. First, the hyperspectal method showed acceptable performance in morphological mapping for shallow regions, where the maximum measurable depth was 2.5 m and 1.25 m in the Nakdong and Hwang river, respectively. Second, RMSE was more feasible to derive the maximum measurable depth rather than the conventional correlation coefficient whereby considering various scenario of excluding range of in situ depths for OBRA. Third, highly turbid region in Hwang River did not allow hyperspectral bathymetry mapping compared with the case of adjacent Nakdong River, where maximum measurable depth was down to half in Hwang River.

The Agreements between FEV1 and PEFR in the Patients of Mild Bronchial Asthma (외래 진료가 가능한 경증 천식 환자에서 1초간 노력성 호기량(FEV1)과 최대 호기유속(PEFR)간의 연관성)

  • Chang, Won Chul;Kim, Byung Kook;Kim, Soon Jong;Yoo, Kwang Ha;Lee, Tae-Hun;Lee, Jung Yeon;Lee, Kye Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.6
    • /
    • pp.638-643
    • /
    • 2005
  • Background : Several studies have shown considerable disagreement when using the $FEV_1$ and PEFR to assess the severity of an airflow obstruction. A differential classification of the severity of asthma would lead to serious differences in the evaluation and management of asthma. The aim of this study was to examine the relationship between the $FEV_1$ and PEFR in asthma patients with mild symptoms. Methods : In this study, the PEFR and $FEV_1$ were obtained from 92 adult asthma patients with mild symptoms attending an outpatient pulmonary clinic. The mean differences and the limits of agreement in the paired measurements of the $FEV_1$ and PEFR were calculated. Results : There was a considerable correlation between the $FEV_1$ and PEFR measurements when expressed as a % of the predicted values (r=0.686, p<0.01). The 95% limit of agreement (mean difference ${\pm}1.96SD$) between the $FEV_1$ % and PEFR % were acceptable(-27.4%~33.8%). In addition, the weighted ${\kappa}$(kappa) coefficient for the agreement between the $FEV_1$ % and PEFR % was 0.74 (95% CI, 0.63-0.81), indicating excellent agreement between the two measurements. Conclusion : The spirometer ($FEV_1$) and the Mini-Wright peak flow meter (PEFR) can be used interchangeably in adult asthma patients with mild symptom.

Hydrologic Regimes Analyses on Down Stream Effects of the Young Chun Dam by Indicators of Hydrologic Alterations (수문변화 지표법에 의한 영천댐이 하류하천에 미치는 유황변화 분석)

  • Park, Bong-Jin;Kim, Joon-Tae;Jang, Chang-Lae;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.163-172
    • /
    • 2008
  • Hydrologic regimes play a major role in determining the biotic composition, structure, and function of river ecosystem. In this study, hydrologic regimes were analyzed on down stream effects of the Young-Chun dam construction using the Indicators of Hydrologic Alterations(IHA). The analysis results were as follows ; (1) Monthly mean flows were decreased during drought and flood season on the pre and post dam, (2) Magnitude and Duration of Annual Exterm Conditions, annual minima 1-day means was $3.48m^3/sec$, $0.89m^3/sec$ and annual maxima 1-day mean was $833.1m^3/sec$, $672.1m^3/sec$ on the pre and post dam (3) Timing of Annual Exterm conditions, Julian date of the annual minima 1-day means was 180th(June) in the pre dam, 257th(September) in the post dam, Julian date of the annual maxima 1-day means was 209th(July) in the pre dam, 217th(August) in the post dam, (4) Frequency and Duration of High and Low Pulse, Low Puls counts and duration were 3 times and 23 days in the pre dam, High Pulse counts and duration were 4 times and 2 days in the pre dam. (5) Rate and Frequency of Water Condition Changes, rise rates was 39.27 %, 19.36 % and fall rates -15.85 %, -8.16 % in the pre and post dam, respectively (6) Coefficient of Variation, annual exteram water conditions were decreased from 0.9054 to 0.6314 and from 1.0440 to 0.9617, Timing of Annual Exterm conditions were incereased for minima flow from 0.269 to 0.282, for maxima form 0.069 to 0.153.