• Title/Summary/Keyword: Mean Flow Analysis

Search Result 869, Processing Time 0.032 seconds

Reliability approach to groundwater flow analysis in underground excavation (지하굴착지반에서의 지하수 흐름에 관한 신뢰성 해석)

  • Jang, Yeon-Soo;Kim, Hong-Seong;Park, Jeong-Wong;Park, Joon-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.344-351
    • /
    • 2005
  • In this paper, a reliability-groundwater flow program is developed by coupling the 2-D finite element numerical groundwater flow program with first and second order reliability program. From the parametric study of hydraulic conductivity of soil layers, the increase of both mean and variance of hydraulic conductivity results in the increase of probability of exceeding the threshold hydraulic head. The probability of failure was more sensitive to parameters of weathered granitic soil and rock located at the middle and bottom of the excavation than those at the other locations. It can be recommended from this study that the reliability method, which can include the uncertainty of soil parameters, should be performed together with the deterministic analysis to compensate the weakness of the latter analysis for the groundwater flow problem of underground excavations.

  • PDF

The Influence of Personality Characteristics, Self-leadership and Positive Psychological Capital on Learning Flow of Nursing Students (간호대학생의 성격유형, 셀프리더십, 긍정심리자본이 학습몰입에 미치는 영향)

  • Jeong, Seung-Eun;Han, Jung Hee
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.25 no.4
    • /
    • pp.393-404
    • /
    • 2019
  • Purpose: This study aims to investigate the influence of personality type, self-leadership, and positive psychological capital on the flow of learning of nursing students. Methods: The sample consisted of 179 nursing students. Data were analyzed using frequency, percentage, mean, standard deviation, t-test, ANOVA, $Scheff{\acute{e}}^{\prime}s$ test, Pearson's correlation coefficient analysis, and Hierarchical multiple regression. Results: Upon analysis, the relative influence of the variables that can improve learning flow, the influencing variables, were identified as self-leadership and self-efficacy. Conclusion: To increase the learning flow, supportive measures and strategies that increase positive psychological capital should be developed, successful cases of self-leadership be shared, and be incorporated into a culture that promotes learning flow. And to promote the learning flow, it needs political and environmental improvement, and institutional support of at the college level.

Large Eddy Simulation for the Analysis of Practical Combustion Field (실용 연소장 해석을 위한 대 와동 모사)

  • Hwang, Cheol-Hong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.181-188
    • /
    • 2005
  • Large eddy simulation(LES) methodology used to model the isothermal swirling flows in a dump combustor and the turbulent premixed flame in a model gas turbine combustor. The LES solver was implemented on parallel computer consisting 16 processors. In isothermal flow simulation, the results was compared with that of ${\kappa}-{\varepsilon}$ model as well as experimental data, in order to verify the capability of LES code. To model the turbulent premixed flame in a gas turbine, the G-equation flamelet model was used. The results showd that LES and RANS well predicted the mean velocity field of a non-swirling flow. However, in swirling flow, LES showed a better performance in predicting the mean axial and azimuthal velocities, and the central recirculation zone than those of RANS. In a model gas turbine combustor, the operation condition of high pressure and temperature induced the different phenomena, such as flame length and flow-field information, comparing with the condition of ambient pressure and temperature. Finally, it was identified that the flame and heat release oscillations are related to the vortex shedding generated by swirl flow and pressure wave propagation.

  • PDF

Parametric study of population balance model on the DEBORA flow boiling experiment

  • Aljosa Gajsek;Matej Tekavcic;Bostjan Koncar
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.624-635
    • /
    • 2024
  • In two-fluid simulations of flow boiling, the modeling of the mean bubble diameter is a key parameter in the closure relations governing the intefacial transfer of mass, momentum, and energy. Monodispersed approach proved to be insufficient to describe the significant variation in bubble size during flow boiling in a heated pipe. A population balance model (PBM) has been employed to address these shortcomings. During nucleate boiling, vapor bubbles of a certain size are formed on the heated wall, detach and migrate into the bulk flow. These bubbles then grow, shrink or disintegrate by evaporation, condensation, breakage and aggregation. In this study, a parametric analysis of the PBM aggregation and breakage models has been performed to investigate their effect on the radial distribution of the mean bubble diameter and vapor volume fraction. The simulation results are compared with the DEBORA experiments (Garnier et al., 2001). In addition, the influence of PBM parameters on the local distribution of individual bubble size groups was also studied. The results have shown that the modeling of aggregation process has the largest influence on the results and is mainly dictated by the collisions due to flow turbulence.

APPLICATION OF DUAL PARAMETER ANALYSIS IN FLOW CYTOMETRIC DNA MEASUREMENTS OF ORAL SQUAMOUS CELL CARCINOMA (구강편평세포암종의 유세포분석적 DNA측정을 위한 이중 매개변수법의 적용)

  • Kim, Su-Ya;Ju, Hoon;Kim, Jae-Gon;Cho, Nam-Pyo;Baik, Byeong-Ju
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.2
    • /
    • pp.503-524
    • /
    • 1996
  • A series of 31 patients with primary oral squamous cell carcinoma (SCC) who were treated at Chonbuk National University Hospital during the years 1991-1995, were evaluated by dual parameter analysis in flow cytometric DNA measurement, Bryne's malignancy grading system, and the TNM classification. The aims of the present study were to discover that previously undetected aneuploid clones could be detected by dual parameter analysis and to determine the prognostic value of the above parameters. 1. Using dual parameter analysis of cytokeratin and DNA on disintegrated paraffin-embedded samples, aneuploid clones which were undetected by regular single parameter DNA analysis could be found among the cytokeratin-selected cells. DNA aneuploidy from paraffin-embedded samples were 15 cases compared with 10 cases using conventional DNA analysis. 2. The portion of aneuploid tumors showed slightly higher clinical stage and tumor size than the portion of diploid tumors, but the difference was not significant. The portion of DNA aneuploid tumors showed significantly higher mean mitosis and total malignancy scores than the portion of DNA diploid tumors. 3. The majority of the patients presented with clinical stage III and IV lesions showed significantly higher mean total malignancy score as compared to those with clinical stage I and II. 4. Histopathologic mean total malignancy score of the 31 cases was 12.7. Among the histologic parameters, mean mitosis score was correlated to the status of DNA ploidy and total malignancy score were correlated to the DNA ploidy and clinical staging.

  • PDF

Numerical Analysis of Drag-Reducing Turbulent Flow by Polymer Injection with Reynolds Stress Model (레이놀즈응력모델을 이용한 난류의 고분자물질 첨가 저항감소현상에 대한 수치해석)

  • Ko, Kang-Hoon;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • A modified low-Reynolds-number Reynolds stress model is developed for the calculation of drag-reducing turbulent flows induced by polymer injection. The results without polymer injection are compared with the results of direct numerical simulation to ensure the validity of the basic model. In case of drag reduction, profiles of mean velocity and Reynolds stress components, in two-dimensional channel flow, obtained with a proper value of viscosity ratio are presented and discussed. Computed mean velocity profile is in very good agreement with experimental data. And, the qualitative behavior of Reynolds stress components with the viscosity ratio is also reasonable.

THE STUDY OF AERO-ACOUSTICS CHARACTERISTIC BY BOUNDARY CONDITIONS (경계조건에 따른 공력음향 특성에 관한 연구)

  • Lee, S.S.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.75-80
    • /
    • 2009
  • The present paper focuses on the analysis of aero-acoustics characteristic by several boundary conditions. In this simulation, a high-order and high-resolution numerical schemes are used for the accurate computation of compressible flow with several boundary conditions including characteristic boundary conditions as well as extrapolation and zonal characteristic boundary condition. These boundary conditions are applied to the computation of two dimensional circular cylinder flows with Mach number of 0.3 and Reynolds number of 400. The computation results are validated with measurement datum and other computation results for the Strouhal frequency of vortex shedding, the mean drag coefficient and root-mean-square lift for the unsteady periodic flow regime. Secondary frequency is predicted by three kinds of boundary conditions characteristic.

  • PDF

Effects of Dilatation and Vortex Stretching on Turbulence in One-Dimensional and Axisymmetric Flows (일차 및 축대칭유동에서 밀도변화가 난류에 미치는 영향)

  • Kim Jin-Hwa;Yoo Jung Yul;Kang Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.831-834
    • /
    • 2002
  • An analytic approach is attempted to predict the amplification of turbulence in compressible flows experiencing one-dimensional and axisymmetric bulk dilatation. The variations of vortex radius and vorticity are calculated, and then the amplification of turbulence is obtained from them by tracking three representative vortices. For a one-dimensionally compressed flow, the present analysis slightly underestimates the amplification of velocity fluctuations and turbulent kinetic energy, relative to that of rapid distortion theory in the solenoidal limit. For an axisymmetrically distorted flow, the amplification of velocity fluctuations and turbulent kinetic energy depend not only on the density ratio but also on the ratio of streamwise mean velocities, which represents streamwise vortex contraction/stretching. In all flows considered, the amplification of turbulence is dictated by the mean density ratio. In the axisymmetric flow, streamwise vortex stretching/contraction, however, alters the amplification slightly.

  • PDF

A Numerical Study on In-cylinder Flow Fields of an Axisymmetric Engine (축대칭 엔진 실린더내의 유동장에 관한 수치적 연구)

  • 최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.662-670
    • /
    • 1999
  • A numerical prediction was performed to clarify the air motion in the cylinder of an axisymmet-ric four-stroke reciprocating engine at its intake and compression stage. A scheme of finite volume method is used for the calculation. Modified $k-{\varepsilon}$ turbulence model is adopted and wall function is applied to the grids near the wall. The predicted mean velocity and rms velocity profiles showed a reasonable agreement with an available experimental data at its intake and compression stage. The predicted in-cylinder flow fields show that a strong turbulent twin vortex structure is pro-duced during induction but it commences to decay rapidly around inlet valve closure. The mean velocity continues to fall to a low level during compression but the turbulence intensity attains an approximate constant level.

  • PDF

Numerical Investigation of the Flow Pulsation in the Gap connecting with Two Parallel Rectangular Channels with Different Cross-section Areas (크기가 다른 단면을 가진 평행한 사각 유로를 연결하는 협소유로의 맥동유동에 관한 수치해석)

  • Seo, Jeong-Sik;Shin, Jong-Kuen;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.512-519
    • /
    • 2009
  • Flow pulsation in the gap connecting with two parallel channels is investigated by RANS and URANS approaches. The two parallel channels are connected by a small channel called for a gap. The parallel channels are designed to have different cross section area with its ratio of 0.5. Computations are conducted using a CFX 11.0 code. The bulk Reynolds number is 60,000. Predicted results are compared with the previous experimental data. Mean velocity profile at the center of gap region are compared with experiments for its validation. Spectral analysis on the lateral velocity in the center of the gap was performed. Auto correlation for the axial-flow velocity pattern was presented. The unsteady structure of the flow pulsation was visualized in the region of the gap in the parallel channel.