• 제목/요약/키워드: Maximum wind velocity

검색결과 214건 처리시간 0.024초

기상청 자료를 이용한 도시의 바람자료 분석 연구 - 32개 도시의 30년간 바람자료 분석 - (The Analysis of Wind Data at the Cities in Korea with Meteorological Administration Data -Wind Data Analysis in 32 Cities During 30 Years-)

  • 윤재옥
    • KIEAE Journal
    • /
    • 제3권1호
    • /
    • pp.5-12
    • /
    • 2003
  • Using the wind, we can get a thermal comfort in summer. In winter we must shut out the wind. To achieve sustainable environmental building design, especially wind data is very important. The wind direction and wind velocity of 32 cities were analyzed to suggest the wind map of Korea. The weather data which was used in this paper was from National Weather Service(19711.1~2000.12.31). The results of this study are 1) The monthly wind velocity of Seoul is 1.1m/s-3.8m/s. 2) The maximum wind velocity could be estimated from the annual average wind velocity. The regression curve is Y(The maximum wind velocity)=6.369732 X(annual average wind velocity) + 6.391668 (P< 9.66E-12). 3) The wind velocity at the inland area which is far from 25km sea side is smaller than coastal area. The distance from the sea is major index of wind velocity. 4) The monthly wind direction was compared inland area with coastal area. 5) The uniform-velocity line on the Korean map was obtained.

Probability distribution and statistical moments of the maximum wind velocity

  • Schettini, Evelia;Solari, Giovanni
    • Wind and Structures
    • /
    • 제1권4호
    • /
    • pp.287-302
    • /
    • 1998
  • This paper formulates a probabilistic model which is able to represent the maximum instantaneous wind velocity. Unlike the classical methods, where the randomness is circumscribed within the mean maximum component, this model relies also on the randomness of the maximum value of the turbulent fluctuation. The application of the FOSM method furnishes the first and second statistical moments in closed form. The comparison between the results herein obtained and those supplied by classical methods points out the central role of the turbulence intensity. Its importance is exalted when extending the analysis from the wind velocity to the wind pressure.

일순간최대풍속의 난류특성에 관한 평가 (Estimation on the Turbulence Characteristics of Daily Instantaneous Maximum Wind Velocity)

  • 오종섭
    • 한국방재안전학회논문집
    • /
    • 제10권1호
    • /
    • pp.75-84
    • /
    • 2017
  • 내풍설계에서 기본풍속의 경우 우리나라는 10분 평균풍속을 이용하고 있지만, 기후변화와 태풍의 직간접 영향 및 강도증가로 인한 순간최대풍속이 구조물에 미치는 영향이 더 크다는 사실이 알려지고 있고, 일부 다른 나라에서는 이러한 순간풍속의 효과를 고려 3초의 평균풍속을 이용하고 있다. 본 논문에서는 1973-2016연까지의 일순간최대풍속의 확률과정, 통계적 성질, 난류의 특성 등을 평가하기 위하여 대표지점(17개 지점)을 선정했다. 선정된 각 지점에 대한 일순간최대풍속자료는 기상청으로부터 획득했다. 획득된 순간풍속의 해석결과 다음과 같은 결론을 얻었다. 1. 제주 서귀포 여수 부산에서의 8 7 9월에 0.2~0.35%로 나타났고, 서울 대관령은 3 4 5월에 0.25%로 나타났다. 2. 확률과정의 왜도평가에서 해안지역보다는 내륙지역에서의 더 큰 비정규성을 나타냈다. 3. 인접지역의 상관계수 평가에서 서울 인천(0.8), 대전 청주(0.75), 제주 서귀포(0.72) 순으로 나타났으며, 대관령 강릉은(-0.07), 전주 군산(0.0)은 인접지역의 영향이 거의 없는 것으로 나타났다.

관형 코로나 방전전극을 이용한 이온풍속의 최대화 (An Maximization of Ionic Wind Utilizing a Cylindrical Corona Electrode)

  • 정재승;문재덕
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2256-2261
    • /
    • 2010
  • A corona discharge system with needle point or wire type corona electrode has been well used as an ionic wind blower. The corona discharge system with a needle point electrode produces ions at lower applied voltage effectively. However, the corona discharge on the needle point electrode transits to the arc discharge at lower voltage, and it is hard to obtain the elevated electric field in the discharge airgap for enhancing the ion migration velocity due to the weak Coulomb force. A cylindrical corona electrode with sharp round tip is reported as one of effective corona electrode, because of its higher breakdown voltage than that of the needle electrode. A basic study, for the effectiveness of cylindrical electrode shape on the ionic wind generation, has been investigated to obtain an maximum wind velocity, which however is the final goal for the real field application of this kind ionic wind blower. In this paper, a parametric study for maximizing the ionic wind velocity utilizing the cylindrical corona electrode and a maximum ion wind velocity of 4.1 m/s were obtained, which is about 1.8 times higher than that of 2.3m/s obtained with the needle corona electrode from the velocity profile.

공기 저항과 바람의 영향을 고려한 대기에서의 유체입자의 3차원 궤적 (Three-Dimensional Trajectory of a Fluid Particle in Air with Wind Effects and Air Resistance)

  • 이동렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권4호
    • /
    • pp.797-808
    • /
    • 2001
  • Three-dimensional trajectory of fluid particle is simulated by a particle motion, which is able to examine the influences of changes in the several parameters. To calculate the trajectory of a particle, the Runge-Kutta method was utilized. The use of a projectile of particles for the trajectory of liquid jet has been shown to be useful to estimate the influence of different operating parameters such as best particle diameter, density of liquid body, initial take-off velocity, wind velocity, cross wind velocity, take-off angle, and base angle for a released flow from the nozzle. The results give the trajectories of various types of particle of body and at different elevations, base angles, wind velocities and densities of liquid body. The trajectories in a vacuum show that air resistances decreases both the distance and the maximum height of a projectile, and also explain that the termination time is also reduced in air. In addition, the maximum distance in the x direction was obtained with take-off angles from 30 degrees to 45 degrees in still air and the projectile of particles was highly effected by wind and cross wind. Clearly, a particle has to be so positioned as to take the optimum possible advantage of the wind if the maximum distances is requested. The wind astern increased the maximum distances of x direction compared with the wind ahead. Finally, it is possible to optimize the design of pump by using these results.

  • PDF

풍자원 평가를 위한 건축물 주변의 유동특성 (Characteristic of Wind Flow around Building Structures for Wind Resource Assessment)

  • 조강표;정승환;신승화
    • 한국유체기계학회 논문집
    • /
    • 제14권3호
    • /
    • pp.50-58
    • /
    • 2011
  • To utilize wind resources effectively around buildings in urban area, the magnitudes of wind velocity and turbulence intensity are important, which means the need of the information about the relationship between the magnitude of wind velocity and that of fluctuating wind velocity. In the paper, wind-tunnel experiments were performed to provide the information about Characteristic of Wind flow around buildings with the spanwise distance and the side ratio of buildings as variables. For a single building with the side ratios of one and two, the average velocity ratio was 1.4 and the velocity standard deviation ratio ranged from 1.4 to 2.6 at the height of 0.02m at the corner of the windward side, in which flow separation occurred. For twin buildings with the side ratios of one and two, the velocity ratio ranged from 2 to 2.5 as the spanwise distance varied at the height of 0.02m, and the velocity standard deviation ratio varied near 1.25. For twin buildings with the side ratios of one and two, the maximum velocity ratio was 1.75 at the height of 0.6m, and the maximum velocity standard deviation ratio was 2.1. It was also found from the results of CFD analysis and wind-tunnel experiments that for twin buildings with the side ratios of one and two, the difference between the velocity ratio of CFD analysis and that of wind-tunnel experiments at streamwise distances was near 0.75.

풍력발전기의 블레이드에 대한 FSI 해석 (FSI analysis on wind turbine blade)

  • 김윤기;김경천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2829-2832
    • /
    • 2007
  • In this study, one-way fluid structure interaction analysis(FSI) on wind turbine blade was performed. Both a quantitative fluid analysis on 3-bladed wind turbine and a structural analysis using the surface pressure data resulting from fluid analysis were carried out. Streamlines and angle of attack was easily acquired from analysis results, we showed the inlet velocity that the stall begins to occur. In the structural analysis, structural displacement and maximum stress of the two comparative models was calculated. The location that has maximum stress was found. The pressure difference between back and front part of the blade increases as the inlet velocity increase. The torque and maximum with regard to inlet velocity was also presented.

  • PDF

유동-구조 연성해석 기법을 이용한 풍력발전시스템 해석 (Analysis of Wind Turbine system using Fluid Structure Diteraction)

  • 김윤기;김경천
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2006년도 추계학술대회 논문집
    • /
    • pp.141-144
    • /
    • 2006
  • In this study, one-way fluid structure interaction analysis(FSI) on wind turbine blade was performed. Both a quantitative fluid analysis on 3-bladed wind turbine and a structural analysis using the surface pressure data resulting from fluid analysis were carried out. Streamlines and angle of attack was easily acquired from analysis results, we showed the inlet velocity that the stall begins to occur. In the structural analysis, structural displacement and maximum stress of the two comparative models was calculated. The location that has maximum stress was found. The pressure difference between back and front part of the blade increases as the inlet velocity increase. The torque and maximum with regard to inlet velocity was also presented.

  • PDF

소형 풍동을 이용한 토양의 풍식 가능 입경 분석 (Experimental Investigation on Particle Size of Soils Erodible by Wind using Portable Wind Erosion Tunnel)

  • 김태완;손영환;민슬기;이인복;홍세운;김민영
    • 한국농공학회논문집
    • /
    • 제55권6호
    • /
    • pp.127-133
    • /
    • 2013
  • The purpose of this study was to investigate maximum and minimum grain size which eroded by wind according to soil and wind conditions, such as top soil water content, roughness, land slope, wind velocity and proportion of grain size under 0.84mm. For performing this study, portable wind erosion tunnel was designed and utilized during field test, which facilitated measuring actual wind erosions under artificially controlled wind conditions. In the result, maximum, minimum grain size had strong negative correlation with roughness while weak positive correlation with wind velocity. Also, Slope which means the effect of gravity also influence grain size erodible by winds. Based on these results, regression equations were suggested for predicting maximum and minimum grain sizes by using multiple linear regression analysis from SPSS 20.0. The equation for maximum grain size erodible by winds showed a good agreement with the observed data with $R^2$=0.896. Other equation for minimum grain size had $R^2$=0.777.

100kW용 풍력발전기의 블레이드에 대한 유동/구조 연성해석 (Analysis of Fluid Structure Interaction on 100kW-HAWT-blade)

  • 김윤기;김경천
    • 한국가시화정보학회지
    • /
    • 제4권1호
    • /
    • pp.41-46
    • /
    • 2006
  • In this study, one-way fluid structure interaction analysis(FSI) on wind turbine blade was performed. Both a quantitative fluid analysis on 3-bladed wind turbine and a structural analysis using the surface pressure data resulting from fluid analysis were carried out. Streamlines and angle of attack was easily acquired from analysis results, we showed the inlet velocity that the stall begins to occur. In the structural analysis, structural displacement and maximum stress of the two comparative models was calculated. The location that has maximum stress was found. The pressure difference between back and front part of the blade increases as the inlet velocity increase. The torque and maximum with regard to inlet velocity was also presented.

  • PDF