• Title/Summary/Keyword: Maximum wind speed

Search Result 601, Processing Time 0.031 seconds

Design of a column for streetlamp considering the car crash (승용차 충돌을 고려한 가로등주 설계)

  • Lim, Jaemoon;Lee, Kwangwon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.57-61
    • /
    • 2013
  • A column for streetlamp has been damaged by severe wind loads such as typhoon. The stress concentration around the inspection hole may cause the collapse of the column for streetlamp. In this paper, the effects due to the wind load of 60 m/s and the car crash to the column at the speed of 48 km/h were considered to examine the design stability analysis of the column for streetlamp. The maximum von Mises stress did not exceed the yield stress of the material. Considering the car crash, the column for streetlamp was not collapsed.

Wind characteristics at Sutong Bridge site using 8-year field measurement data

  • Xu, Zidong;Wang, Hao;Wu, Teng;Tao, Tianyou;Mao, Jianxiao
    • Wind and Structures
    • /
    • v.25 no.2
    • /
    • pp.195-214
    • /
    • 2017
  • Full-scale wind characteristics based on the field measurements is an essential element in structural wind engineering. Statistical analysis of the wind characteristics at Sutong Cable-stayed Bridge (SCB) site is conducted in this study with the recorded long-term wind data from structural health monitoring system (SHMS) between 2008 and 2015. Both the mean and turbulent wind characteristics and power spectra are comprehensively investigated and compared with those in the current codes of practice, such as the measured wind rose diagram, monthly maximum mean wind speed, turbulence intensity, integral length scale. Measurement results based on the monitoring data show that winds surrounding the SCB site are substantially influenced by the southeast monsoon in summer and strong northern wind in winter. The measured turbulence intensity is slightly higher than the recommended values in specifications, while the measured ratio of lateral to longitudinal turbulence intensity is slightly lower. An approximately linear relationship between the measured turbulence intensities and gust factors is obtained. The mean value of the turbulence integral length scale is smaller than that of typical typhoon events. In addition, it is found that the Kaimal spectrum is suitable to be adopted as the power spectrum for longitudinal wind component at the SCB site. This contribution would provide important wind characteristic references for the wind performance evaluation of SCB and other civil infrastructures in adjacent regions.

A Technical Review on the Structure Design Criteria for a Catenary System with Maximum Design Speed of 200 km/h (200 km/h급 전차선로 구조강도 설계기준에 관한 기술적 검토)

  • 조용현;이기원;권삼영;최강윤;창상훈
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.273-280
    • /
    • 2001
  • In this study, a comparison between the structural design criteria for a catenary system with the maximum design speed of 100km/h and that of 300km/h was performed in order to establish that of 200km/h. According to the result, catenary design criteria for 300km/h operation is more conservative than that for 100km/h operation. This result shows that higher wind pressure and safety factor are adopted to catenary design for 300km/h operation. So, for the purpose of the economic structural design for catenary system, it is necessary to review the adoption possibility of catenary system for 100km/h operation first. In order to review the adoption possibility for catenary system for 100km/h operation, design criteria for 300km/h operation should be chosen for safer catenary structure.

  • PDF

The Effect of Stator`s Slot on the Torque in the Windmill Type Ultrasonic Motor (풍차형 초음파 전동기의 고정자 슬롯이 토크에 미치는 영향)

  • 김영균;김진수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.323-326
    • /
    • 1999
  • In this paper, a windmill type ultrasonic motor operated by single-Phase AC electric field was fabricated, and then torque characteristics were investigated. A metal-ceramic composite component was used as the stator\`s vibrator to generate ultrasonic vibrations. The windmill type ultrasonic motors has only three components; a stator element with two wind-mill shape slotted metal endcaps, a rotor and a bearing. In this parer we measured torque, when stator\`s slot was changed Iron 4, 6, 8. Brass metal was pressed with umbrella-type using metal molt then slot of 3 kind was manufactured. The maximum revolution speed was 388(rpm) in the case of a small ultrasonic motor of 11.35 mm diameter, 8 slot and 1.01 mm thickness. The maximum torque of 0.17 mNm was obtained at a speed of 131 rpm.

  • PDF

Measurement of Net Photosynthetic Rate in the Plug Stand (플러그묘 개체군의 순광합성속도 측정)

  • 김용현;고재풍수
    • Journal of Biosystems Engineering
    • /
    • v.22 no.3
    • /
    • pp.311-316
    • /
    • 1997
  • Two methods were used to detrermine the net photosynthetic rate(NPR) in the plug stand using a wind tunnel for plug seedlings Production. One is called as the integration method in which NPR calculated by the use of air current speed and $CO^2$ concentration measured at any heights above the medium surface in a wind tunnel were summed. It was assumed that the air flow at any layer did not mix with the lower or upper air layer. The other is called as the diffusion method in which eddy diffusivities above the plug stand were used to determine the NPR in the plug stand. In this method, $CO^2$ above or inside the plug stand was assumed to be absorbed vertically. NPR determined by the diffusion method was 28~45% of the NPR calculated by the integration method. Considering the magnitude of NPR and the effects of the air current speed on NPR, the integration method would be adequate for the calculation of NPR in the plug stand. Maximum NPR determined using the integration method appeared at the air current speed of 0.7m $s^{-1}$. It was ascribed to the decreased diffusion resistances of $CO^2$ with the increasing air current speed. NPR at the rear region in plug stand was 20~34% lower than that at the front region. NPR sharply decreased with the increase of an elapsed time after the beginning of photoperiod. Therefore $CO^2$ enrichment would be effective to force the growth of plug seedlings in a semi-closed ecological system under artificial lighting.

  • PDF

Stepwise Inertial Control of a Doubly-Fed Induction Generator to Prevent a Second Frequency Dip

  • Kang, Mose;Lee, Jinsik;Hur, Kyeon;Park, Sang Ho;Choy, Youngdo;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2221-2227
    • /
    • 2015
  • To arrest a frequency nadir, a stepwise inertial control (SIC) scheme generates a constant active power reference signal of a wind turbine generator (WTG) immediately after a disturbance and maintains it for the predetermined time. From that point, however, the reference of a WTG abruptly decreases to restore the rotor speed for the predefined period. The abrupt decrease of WTG output power will inevitably cause a second frequency dip. In this paper, we propose a modified SIC scheme of a doubly-fed induction generator (DFIG) that can prevent a second frequency dip. A reference value of the modified SIC scheme consists of a reference for the maximum power point tracking control and a constant value. The former is set to be proportional to the cube of the rotor speed; the latter is determined so that the rotor speed does not reach the minimum operating limit by considering the mechanical power curve of a DFIG. The performance of the modified SIC was investigated for a 100 MW aggregated DFIG-based wind power plant under various wind conditions using an EMTP-RV simulator. The results show that the proposed SIC scheme significantly increases the frequency nadir without causing a second frequency dip.

Whole-life wind-induced deflection of insulating glass units

  • Zhiyuan Wang;Junjin Liu;Jianhui Li;Suwen Chen
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.289-302
    • /
    • 2023
  • Insulating glass units (IGUs) have been widely used in buildings in recent years due to their superior thermal insulation performance. However, because of the panel reciprocating motion and fatigue deterioration of sealants under long-term wind loads, many IGUs have the problem of early failure of watertight properties in real usage. This study aimed to propose a statistical method for wind-induced deflection of IGU panels during the whole life service period, for further precise analysis of the accumulated fatigue damage at the sealed part of the edge bond. By the estimation of the wind occurrence regularity based on wind pressure return period, the events of each wind speed interval during the whole life were obtained for the IGUs at 50m height in Beijing, which are in good agreement with the measured data. Also, the wind-induced deflection analysis method of IGUs based on the formula of airspace coefficient was proposed and verified as an improvement of the original stiffness distribution method with the average relative error compared to the test being about 3% or less. Combining the two methods above, the deformation of the outer and inner panes under wind loads during 30 years was precisely calculated, and the deflection and stress state at selected locations were obtained finally. The results show that the compression displacement at the secondary sealant under the maximum wind pressure is close to 0.3mm (strain 2.5%), and the IGUs are in tens of thousands of times the low amplitude tensile-compression cycle and several times to dozens of times the relatively high amplitude tensile-compression cycle environment. The approach proposed in this paper provides a basis for subsequent studies on the durability of IGUs and the wind-resistant behaviors of curtain wall structures.

Investigations on aerosols transport over micro- and macro-scale settings of West Africa

  • Emetere, Moses Eterigho
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.75-86
    • /
    • 2017
  • The aerosol content dynamics in a virtual system were investigated. The outcome was extended to monitor the mean concentration diffusion of aerosols in a predefined macro and micro scale. The data set used were wind data set from the automatic weather station; satellite data set from Total Ozone Mapping Spectrometer aerosol index and multi-angle imaging spectroradiometer; ground data set from Aerosol robotic network. The maximum speed of the macro scale (West Africa) was less than 4.4 m/s. This low speed enables the pollutants to acquire maximum range of about 15 km. The heterogeneous nature of aerosols layer in the West African atmosphere creates strange transport pattern caused by multiple refractivity. It is believed that the multiple refractive concepts inhibit aerosol optical depth data retrieval. It was also discovered that the build-up of the purported strange transport pattern with time has enormous potential to influence higher degrees of climatic change in the long term. Even when the African Easterly Jet drives the aerosols layer at about 10 m/s, the interacting layers of aerosols are compelled to mitigate its speed to about 4.2 m/s (macro scale level) and boost its speed to 30 m/s on the micro scale level. Mean concentration diffusion of aerosols was higher in the micro scale than the macro scale level. The minimum aerosol content dynamics for non-decaying, logarithmic decay and exponential decay particulates dispersion is given as 4, 1.4 and 0 respectively.

A Simple Power Management Scheme with Enhanced Stability for a Solar PV/Wind/Fuel Cell Fed Standalone Hybrid Power Supply using Embedded and Neural Network Controller

  • Thangavel, S.;Saravanan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1454-1470
    • /
    • 2014
  • This paper propose a new power conditioner topology with intelligent power management controller that integrates multiple renewable energy sources such as solar energy, wind energy and fuel cell energy with battery backup to make best use of their operating characteristics and obtain better reliability than that could be obtained by single renewable energy based power supply. The proposed embedded controller is programmed for maintaining a constant voltage at PCC, maximum power point tracking for solar PV panel and WTG and power flow control by regulating the reference currents of the controller on instantaneous basis based on the power delivered by the sources and load demand. Instantaneous variation in reference currents of the controller enhances the controller response as it accommodates the effect of continuously varying solar insolation and wind speed in the power management. The power conditioner uses a battery bank with embedded controller based online SOC estimation and battery charging system to suitably sink or source the input power based on the load demand. The simulation results of the proposed power management system for a standalone solar/WTG/fuel cell fed hybrid power supply with real time solar radiation and wind velocity data collected from solar centre, KEC for a sporadically varying load demand is presented in this paper and the results are encouraging in reliability and stability perspective.

A Study on Development of Test Site for Wind Turbine Prototype Test (풍력터빈시험을 위한 실증시험장 개발에 관한 연구)

  • Moon, Chae-Joo;Chang, Young-Hag;So, Soon-Yeol;Kim, Tae-Gon;Kim, Young-Gon;Jeong, Moon-Seon;Jeong, Seong-Won
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.101-107
    • /
    • 2013
  • It is evident that in the wind energy business as an economic activity there is a close relationship between the wind speed and the revenues. The wind turbine test facility for wind turbine accreditation is intended to be used by the industry for testing of both main components and systems. This paper suggest the wind test site for certification of prototype wind turbine with international regulations. The test site has an environmental permit for wind turbines with a maximum hub height of 120m and a rotor diameter up to 120m, and can accommodate prototypes with installed electrical powers up to 5MW each. A wind turbine manufacturer can lease the location for a period of type certification. And also researchers are the development of new methods for measuring the influence, performance and durability of the components, a mathematical and numerical modelling of component responses by using the site.