• 제목/요약/키워드: Maximum vertical displacement

검색결과 170건 처리시간 0.025초

Optimal pre-conditioning and support designs of floor heave in deep roadways

  • Wang, Chunlai;Li, Guangyong;Gao, Ansen;Shi, Feng;Lu, Zhijiang;Lu, Hui
    • Geomechanics and Engineering
    • /
    • 제14권5호
    • /
    • pp.429-437
    • /
    • 2018
  • In order to reduce deformation of roadway floor heave in deep underground soft rockmass, four support design patterns were analyzed using the Fast Lagrangian Analysis of Continua (FLAC)3D, including the traditional bolting (Design 1), the bolting with the backbreak in floor (Design 2), the full anchorage bolting with the backbreak in floor (Design 3) and the full anchorage bolting with the bolt-grouting backbreak in floor (Design 4). Results show that the design pattern 4, the full anchorage bolting with the bolt-grouting backbreak in floor, was the best one to reduce the deformation and failure of the roadway, the floor deformation was reduced at 88.38% than the design 1, and these parameters, maximum vertical stress, maximum horizontal displacement and maximum horizontal stress, were greater than 1.69%, 5.96% and 9.97%. However, it was perfectly acceptable with the floor heave results. The optimized design pattern 4 provided a meaningful and reliable support for the roadway in deep underground coal mine.

Construction stages analyses using time dependent material properties of concrete arch dams

  • Sevim, Baris;Altunisik, Ahmet C.;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • 제14권5호
    • /
    • pp.599-612
    • /
    • 2014
  • This paper presents the effects of the construction stages using time dependent material properties on the structural behaviour of concrete arch dams. For this purpose, a double curvature Type-5 arch dam suggested in "Arch Dams" symposium in England in 1968 is selected as a numerical example. Finite element models of Type-5 arch dam are modelled using SAP2000 program. Geometric nonlinearity is taken into consideration in the construction stage analysis using P-Delta plus large displacement criterion. In addition, the time dependent material strength variations and geometric variations are included in the analysis. Elasticity modulus, creep and shrinkage are computed for different stages of the construction process. In the construction stage analyses, a total of 64 construction stages are included. Each stage has generally $6000m^3$ concrete volume. Total duration is taken into account as 1280 days. Maximum total step and maximum iteration for each step are selected as 200 and 50, respectively. The structural behaviour of the arch dam at different construction stages has been examined. Two different finite element analyses cases are performed. In the first case, construction stages using time dependent material properties are considered. In the second case, only linear static analysis (not considered construction stages) is taken into account. Variation of the displacements and stresses are obtained from the both analyses. It is highlighted that construction stage analysis using time dependent material strength variations and geometric variations has an important effect on the structural behaviour of arch dams. The maximum longitudinal, transverse and vertical displacements obtained from construction stages and static analyses are 1.35 mm and 0 mm; -8.44 and 6.68 mm; -4.00 and -9.90 mm, respectively. In addition, vertical displacements increase from the base to crest of the dam for both analyses. The maximum S11, S22 and S33 stresses are obtained as 1.60MPa and 2.84MPa; 1.39MPa and 2.43MPa; 0.60MPa and 0.50MPa, respectively. The differences between maximum longitudinal, transverse, and vertical stresses obtained from construction stage and static analyses are 78%, 75%, and %17, respectively. On the other hand, there is averagely 12% difference between minimum stresses for all three directions.

가스 스프링을 이용한 높이조절 벙커침대 설계 (Design of a Height Adjustable Bunker Bed Using a Gas Spring)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권4호
    • /
    • pp.19-27
    • /
    • 2021
  • A bunker bed is a type of furniture that efficiently utilizes a narrow indoor space by having a high bed and using the empty space below as a living and storage space. The demand for multi-purpose furniture is increasing due to the recent increase in single-person households and wide-spread shared accommodation. According to the consumer research, one of the major drawbacks of a bunker bed was to get on and off the bed through a ladder or stairs. In order to overcome these problems, it was confirmed that the height adjustment function that can easily adjust the minimum and maximum heights of the bed was necessary. In this study, a height adjustable bunker bed was designed by using a gas spring that generates a repulsive force by the compressed gas inside. The design process consisted of the following three steps: Firstly, the hysteresis characteristics due to a friction and spring constant of a commercial gas spring were confirmed by measuring the repulsive force vs. compressed displacement. Secondly, requirements of the vertical lifting force exerted on the bed against gravity force were derived. Finally, the height-adjustable bed using the four-bar link mechanism was designed with 4 parameters so that the bed weight of 60-70 kgf could be adjusted to 800 mm in height by an affordable initial operation force. The performance was verified through prototype production and the results of vertical displacement and force to move were nearly the same as designed. In addition, an electrically operated height-adjustable bed was also designed with linear actuators and the performance was proved with the prototype.

정사각틀 초음파 모터의 변위 특성 (Displacement Characteristics of the Square-frame Ultrasonic Motor)

  • 김종욱;박충효;임정훈;정성수;김명호;박태곤
    • 한국전기전자재료학회논문지
    • /
    • 제24권9호
    • /
    • pp.733-738
    • /
    • 2011
  • A novel design of a simple square-frame USM (ultrasonic motor) was proposed. The stator of the motor consists of a square-frame shape elastic body and four rectangular plate ceramics. The four ceramics were attached to inner surfaces of the square frame elastic body. The same phase voltages were applied to the ceramics on horizontal surfaces, and 90 degree phase difference voltage were applied to the ceramics on vertical surfaces. To find a model that generates elliptical motion at outside of the stator, the finite element analysis program ATILA was used. The analyzed results were compared to the experimental results. As result, the model EL10EH3ET0.5CL4 which generates the maximum elliptical displacement was chosen by analyzing the resonance mode according to changes in frequency.

Overdenture 하에서 하악응력 및 의치의 변위에 관한 유한요소법적 분석 (FINITE ELEMENT ANALYSIS OF MANDIBULAR STRESSES AND DENTURE MOVEMENTS INDUCED BY OVERDENTURES)

  • 김정희;정재헌;조규종
    • 대한치과보철학회지
    • /
    • 제28권1호
    • /
    • pp.63-94
    • /
    • 1990
  • The purpose of this study was to analyze the displacement and the magnitude and the mode of distribution of the stresses in the lower overdenture, the mucous membrane, the abutment tooth and the mandibular supporting bone when various denture base materials, such as acrylic resin and 0.5mm metal base, and various denture base designs were subjected to different loading schemes. For this study, the two-dimensional finite element method was used. Mandibular arch models, with only canine remaining, were fabricated. In the first denture base design, a space, approximately 1mm thick, was prepared between the denture and the dome abutment. In the second denture base design, contact between the denture and the dome abutment was eliminated except the contact of the occlusal third of the abutment. In order to represent the same physiological condition as the fixed areas of the mandible under loading schemes, the eight nodes which lie at the mandibular angle region, the coronoid process and the mandibular condyle were assumed to be fixed. Each model was loaded with a magnitude of 10 kgs on the first molar region(P1) and 7 kgs on the central incisal region (P2) in a vertical direction. Then the force of 10 kgs was applied distributively from the first premolar to the second molar of each model in a vertical direction(P3). The results were as follows. : 1. When the testing vertical loads were given to the selected points of the overdenture, the overdenture showed the rotatory phenomenon, as well as sinking and the displacements of alveolar ridge, abutment and lower border of mandible under the metal base overdenture were less than those under the acrylic resin overdenture. 2. The maximum principal stresses(the maximum tensile stresses) being considered, high tensile stresses occured at the buccal shelf area, the posterior region of the ridge crest and the anterior border region of the mandibular ramus. 3. The minimum principal stresses(the maximum compressive stresses) being considered, high compressive stresses occured at the inferior and posterior border region of the mandible, the mandibular angle and the posterior border region of the mandibular ramus. 4. The vertical load on the central incisal region(P2) produced higher equivalent stress in the mandible than that on any other region(P1, P3) because of the long lever arm distance from the fixed points to the loading point. 5. Higher equivalent stresses were distributed throughout the metal base overdenture than the resin base overdenture under the same loading condition. 6. The case of occlusal third contact of the abutment to the denture produced higher equivalent stresses in the abutment, the mandibular area around the abutment and the overdenture than the case of a 1mm space between the denture and the abutment. 7. Without regard to overdenture base materials and designs, the amounts and distribution patterns of equivalent stresses under the same loading condition were similar in the mucous membrane.

  • PDF

Numerical investigation on overburden migration behaviors in stope under thick magmatic rocks

  • Xue, Yanchao;Wu, Quansen;Sun, Dequan
    • Geomechanics and Engineering
    • /
    • 제22권4호
    • /
    • pp.349-359
    • /
    • 2020
  • Quantification of the influence of the fracture of thick magmatic rock (TMR) on the behavior of its overlying strata is a prerequisite to the understanding of the deformation behavior of the earth's surface in deep mining. A three-dimensional numerical model of a special geological mining condition of overlying TMR was developed to investigate the overburden movement and fracture law, and compare the influence of the occurrence horizon of TMR. The research results show that the movement of overlying rock was greatly affected by the TMR. Before the fracture of TMR, the TMR had shielding and controlling effects on the overlying strata, the maximum vertical and horizontal displacement values of overlying strata were 0.68 m and 0.062 m. After the fracture, the vertical and horizontal displacements suddenly increased to 3.06 m and 0.105 m, with an increase of 350% and 69.4%, respectively, and the higher the occurrence of TMR, the smaller the settlement of the overlying strata, but the wider the settlement span, the smaller the corresponding deformation value of the basin edge (the more difficult the surface to crack). These results are of tremendous importance for the control of rock strata and the revealing of surface deformation mechanism under TMR mining conditions in mines.

임플랜트 고정체의 형태와 연결방식에 따른 임플랜트 및 지지조직의 응력분포 (STRESS ANALYSIS OF SUPPORTING TISSUES AND IMPLANTS ACCORDING TO IMPLANT FIXTURE SHAPES AND IMPLANT-ABUTMENT CONNECTIONS)

  • 한상운;박하옥;양홍서
    • 대한치과보철학회지
    • /
    • 제42권2호
    • /
    • pp.226-237
    • /
    • 2004
  • Purpose: Four finite element models were constructed in the mandible having a single implant fixture connected to the first premolar-shaped superstructure, in order to evaluate how the shape of the fixture and the implant-abutment connection would influence the stress level of the supporting tissues fixtures, and prosthethic components. Material and methods : The superstructures were constructed using UCLA type abutment, ADA type III gold alloy was used to fabricate a crown and then connected to the fixture with an abutment screw. The models BRA, END , FRI, ITI were constructed from the mandible implanted with Branemark, Endopore, Frialit-2, I.T.I. systems respectively. In each model, 150 N of vertical load was placed on the central pit of an occlusal plane and 150 N of $40^{\circ}$ oblique load was placed on the buccal cusp. The displacement and stress distribution in the supporting tissues and the other components were analysed using a 2-dimensional finite element analysis . The maximum stress in each reference area was compared. Results : 1. Under $40^{\circ}$ oblique loading, the maximum stress was larger in the implant, superstructure and supporting tissue, compared to the stress pattern under vertical loading. 2. In the implant, prosthesis and supporting tissue, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 3. In the superstructure and implant/abutment interface, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 4. In the implant fixture, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 5 The stress was more evenly distributed in the bone/implant interface through the FRI of trapezoidal step design. Especially Under $40^{\circ}$ oblique loading, The maximum stress was smallest in the bone/implant interface. 6. In the implant and superstructure and supporting tissue, the maximum stress occured at the crown loading point through the ITI. Conclusion: The stress distribution of the supporting tissue was affected by shape of a fixture and implant-abutment connection. The magnitude of maximum stress was reduced with the internal connection type (FRI) and the morse taper type (ITI) in the implant, prosthesis and supporting tissue. Trapezoidal step design of FRI showed evenly distributed the stress at the bone/implant interface.

개착식 터널 프리캐스트 아치 구조물의 변형 거동 연구 (Investigation for the deformation behavior of the precast arch structure in the open-cut tunnel)

  • 김학준;이규필;임철원
    • 한국터널지하공간학회 논문집
    • /
    • 제21권1호
    • /
    • pp.93-113
    • /
    • 2019
  • 최근 개착식 터널공법으로 널리 사용되고 있는 프리캐스트 라이닝 아치 구조물에 대하여 현장 계측과 수치해석 결과를 비교하여 3힌지 프리캐스트 아치 구조물의 거동을 분석하였다. 현장 계측결과, 천단부에서 가장 큰 연직변위가 측정되었으며 초기에는 상방향으로 변위가 발생하다가 뒤채움 흙이 천단부보다 높아지면서 하방향으로 변위가 발생하였다. 천단부는 최종적으로 원 위치로부터 상방향 19 mm에서 변위가 수렴하였다. 측벽부 최대 수평변위 지점에서의 수평변위는 아치상단까지 뒤채움시 터널 내측으로 발생하여 두 지점간의 수평거리가 줄어들다가, 상부 성토가 진행될수록 수평변위는 감소하여 원래 위치로 이동하였다. 프리캐스트 아치구조물에 대한 변위 분석결과, 지반-구조물의 상호작용을 잘 관찰할 수 있었으며 따라서 기존의 강성구조물과 비교하여 경제적인 설계가 가능할 것으로 기대된다. Duncan 모델을 사용한 유한요소 해석결과를 현장 변위 계측값과 변위 형상 등과 비교하면 유사한 결과를 나타내었다. 수치해석 결과에 의한 측벽부의 수평토압계수는 터널 좌측부는 0.4, 우측부는 0.7에서 수렴하여, 편토압이 발생하는 현장상황 및 현장 변위 계측 결과와도 일치하였다.

모형챔버시험을 이용한 사질토 지반의 경량포장체용 기초의 하중전달 특성 (Load Transfer Characteristics of Pile Foundation for Lightweight Pavement in Sand Soil using Laboratory Chamber Test)

  • 신광호;황철비;전상렬;이관호
    • 한국산학기술학회논문지
    • /
    • 제15권7호
    • /
    • pp.4588-4594
    • /
    • 2014
  • 본 연구에서는 연약지반에서의 경량콘크리트포장을 적용할 때의 안전성 평가를 위해 실제 포장체 사이즈의 1/30으로 축소한 모형을 이용하여 모래지반에서 실험을 실시하였다. 모형토조를 이용하여 지반을 조성하였고, 표준 말뚝재하시험(완속재하시험방법)을 이용하였다. 수직하중이 적용되는 말뚝기초의 슬래브의 중심에서 가까운 순으로 Case A, Case B, Case C로 구분하였고, 각각의 말뚝의 간격은 8cm로 하였다. 말뚝기초 모형시험결과 사질토지반에서 수직하중을 1.5kg에서 12kg로 증가시킬 때 포장체가 전체적으로 침하하였고, 최대 침하량은 0.4mm로 측정되었다. Case A의 경우 압축력을 받는 것으로 나타났으며, Case B는 수직하중이 증가함에 따라 말뚝에 압축력과 함께 인장력도 같이 받는 것으로 보이며, Case C는 하중단계가 증가할수록 인장변형이 증가하는 경향을 나타내었다.

대형판조립식 구조 수직.수평접합부의 전단강도에 미치는 보강방법의 영향-수직접합부 및 슬래브-슬래브 수평접합부를 중심으로- (Effects of Reinforcing Method Influnced to the Shear Strength of Vertical and Horizontal Joints in Precast Concrete Large Panel Structures -Focused on the Vertical Joints and Slab-Slab Type Horizontal Joints-)

  • 정란;박현수;조승호
    • 콘크리트학회지
    • /
    • 제8권4호
    • /
    • pp.171-179
    • /
    • 1996
  • PC판넬 조립식 구조의 수직.수평접합부의 유용한 접합형태에 따라 접합부 전단내력을 상승시킬 수 있는 접합부 설계의 기본 형태를 제시하는데 연구의 목적이 있다. 시험체는 수직접합부의 경우 전단키의 개수 및 보강철물의 종류에 변수를 주고 수평접합부의 경우에는 전단키의 갯수 및 가력방향에 변수를 주어 총 22개의 시험체를 제작하여 실험하였다. 결론적으로 수직접합부의 경우, 수평보강철물이 있는 시험체는 기존의 다른 실험결과와 마찬가지로 수평보강철물이 없는 시험체에 비하여 연성이 크게 나타났다. EH한 와이어로프와 원형철근 두 종류의 보강철물을 사용하여 실험한 결과 와이어 로프를 사용한 시험체는 원형철근을 사용한 시험체와 최대내력 및 전단강성 등 전체적인 구조거동이 거의 비슷하게 나타났다.