• Title/Summary/Keyword: Maximum residue level

Search Result 99, Processing Time 0.023 seconds

Residue level and pharmacokinetics of trichlorfon in the Japanese eel (Anguilla japonica) after bath treatment (Trichlorfon (TCF)의 약욕 투여에 따른 뱀장어 체내 약물 잔류량 및 약물동태학 연구)

  • Jo, Hyun Ho;Chung, Joon Ki
    • Journal of fish pathology
    • /
    • v.35 no.1
    • /
    • pp.93-102
    • /
    • 2022
  • This study performed a trichlorfon (TCF) residue and pharmacokinetic analysis with Japanese eels, Anguilla japonica, to obtain baseline data to establish the maximum residue level (MRL) of TCF in A. japonica. After dipping A. japonica in 30 ppm and 150 ppm of TCF at 28℃ and 18℃, drug residue in the body was analyzed with LC-MS/MS, and these results were further analyzed with the PK solver program to obtain the pharmacokinetic parameters of TCF in the serum, muscles, and liver. The maximum concentrations (Cmax) in the serum, muscles, and liver were 25.87-357.42, 129.91-1043.73, and 40.47-375.20, respectively, and the time to maximum concentration (Tmax) was 0.13-1.32h, 1.17-3.34h, and 0.14-5.40h, respectively. The terminal elimination half-life (T1/2) was 2.13-3.92h, 5.30-10.35h, and 0.65-13.81h, respectively. In the 30 mg/L concentration group, TCF was not detected in the serum of eels 96 hours after bathing, and was below the detection limit after 336 hours in muscle and liver. On the other hand, in the 150 mg/L concentration group, TCF was not detected in the serum of eels 336 hours after bathing, but was detected in muscle and liver at 336 hours. In conclusion, the results of this study would be useful in establishing the MRL of TCF in farmed A. japonica.

Residues and Exposure Assessment of Carbendazim in Chamnamul on Field Trials for Revising Maximum Residue Limit in Korea (생산단계 참나물의 Carbendazim 잔류특성에 따른 노출평가 및 농약 잔류허용기준 개선)

  • Chang, Hee-Ra;Gwak, Hye-Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.3
    • /
    • pp.153-157
    • /
    • 2022
  • BACKGROUND: The residue dissipation pattern of pesticides for agricultural products during the pre-harvest period after the final application is important to prevent the maximum residue limit (MRL) violations in domestic and export markets. The MRL violations of carbendazim are observed more often in chamnamul by pesticide residue management surveys by the Ministry of Food and Drug Safety. The residue level at the pre-harvest interval (PHI) and the residue dissipation constant from the critical good agricultural practice (cGAP) trials could be estimated to meet the MRL and pose a health risk to consumers. METHODS AND RESULTS: Chamnamuls were harvested at 0, 1, 3, 5, 7, 10, and 14 days after application of carbendazim in accordance with critical GAP. The residue analysis in chamnanul was performed by HPLC-DAD with the C18 column. The limit of quantitation of carbendazim was 0.04 mg/kg, and the recoveries were 74.4 - 95.8% at the two spiked levels (LOQ and 10LOQ) of carbendazim. The dissipation rates in chamnamul were calculated from the residues at the sampling days by statistical method at a 95% confidence level. The biological half-lives of residual carbendazim in the field trials 1 and 2 were 4.9 and 4.4 days, respectively. CONCLUSION(S): In this dissipation study, the residue concentrations at the recommended PHI were higher than the established MRL in Korea. Therefore, the MRL is proposed based on the residue data sets from the trials conducted at the same cGAP and the dietary exposure assessment.

A Study on the Risk of Pesticide Exposure by Food Intake (식이섭취를 통한 농약폭로의 위해도에 관한 연구)

  • 전옥경;이용욱
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.2
    • /
    • pp.201-215
    • /
    • 1999
  • Limited information is available on the acceptability of Korean MRLs(maximum residue limits) and the health risk based on the pesticide exposure by food intake. The aim of this study was to evaluate TMDI(theoretical maximum daily intake) and EDI(estimated daily intake) for Korean by using MRLs, food intake, residue data, and correction factors, and compare with ADI(acceptable daily intake) in order to estimate the health risk based on the pesticide exposure. The study was performed in three steps. In the frist step, the residual pesticides in each category of food were investigated using the pesticide residue analytical data(1995-96) from officially approved organizations and the analytical data for poultry was adopted from Korean food code method. In the second step, TMDI was estimated from MRLs and food factors, and was compared with ADI. In the third step, the effectiveness of each culinary treatment (washing, peeling, steaming, boiling, and salting) was evaluated and EDI was calculated using pesticide residue data, food factor, and correction factor by treatment. TMDI obtained from MRLs and food intake, and food intake was summed as 1,100.99 g, which was 79.1% of total consumption. The percent ratio of TMDI to ADI for 156 pesticides was mostly below 80% and only 30 pesticides exceeded the ADI. In particular, non-treated EDI from pesticide residue data and food intake was summed up to about 43 $\mu\textrm{g}$/day/capita, and the rank was procymidone(8.6 $\mu\textrm{g}$) > maleic hydrazide(8.2 $\mu\textrm{g}$) > EPN(3.7 $\mu\textrm{g}$) > deltamethrin(3.5 $\mu\textrm{g}$) > cypermethrin(3.0 $\mu\textrm{g}$). The treated EDI calculated from pesticide residue data, food intake, and correction factor by culinary treatment was summed up to 13.7 $\mu\textrm{g}$/day/captia. The percentage of ADI was TMDI(79.74%) > non-treated EDI (0.17%) > treated EDI (0.04%), and the exposure level of Korean population to whole pesticides was below the level to produce health risk. Oncogenic risk of five pesticides used in Korea whose oncogenic potency(Q*) was known were assessed from TMDI and treated EDI. Dietary oncogenic risk for Korean was estimated to be 2.0$\times$10-3 on the basis of TMDI, 8.3$\times$10-7 on the basis of treated EDI. The oncogenic risk from TMDI exceeded the risk level(1$\times$10-6) of EPA, whereas the oncogenic risk from treated EDI and real exposure level lower than that of EPA.

  • PDF

Prevalence of Antibiotic Residues and Antibiotic Resistance in Isolates of Chicken Meat in Korea

  • Lee, Hyo-Ju;Cho, Seung-Hak;Shin, Dasom;Kang, Hui-Seung
    • Food Science of Animal Resources
    • /
    • v.38 no.5
    • /
    • pp.1055-1063
    • /
    • 2018
  • The aim of study was to investigate the correlation between the level of 17 antibiotic residues and 6 antibiotic resistances of Escherichia coli isolates in chicken meats. A total of 58 chicken meats were collected from retail grocery stores in five provinces in Korea. The total detection rate of antibiotic residues was 45% (26 out of 58). Ten out of 17 antibiotics were detected in chicken meats. None of the antibiotics exceeded the maximum residue level (MRLs) in chicken established by the Ministry of Food and Drug Safety (MFDS). The most detected antibiotics were amoxicillin (15.5%), followed by enrofloxacin (12.1%) and sulfamethoxazole (10.3%). In a total of 58 chicken meats, 51 E. coli strains were isolated. E. coli isolates showed the highest resistance to ampicillin (75%), followed by tetracycline (69%), ciprofloxacin (65%), trimethoprim/sulfamethoxazole (41%), ceftiofur (22%), and amoxicillin/clavulanic acid (12%). The results of study showed basic information on relationship between antibiotic residue and resistance for 6 compounds in 13 chicken samples. Further investigation on the antibiotic resistance patterns of various bacteria species is needed to improve food safety.

Assessment of Oncogenicity from Pesticide Residues in Korean Foods (한국식품 중 잔류농약의 종양유발성 평가)

  • Lee, Mi-Gyung;Lee, Su-Rae
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.871-877
    • /
    • 1995
  • Dietary intake and oncogenic risk of 12 pesticides used in Korea whose oncogenic potency was known were assessed from published data. Dietary oncogenic risk (excess tumor incidence for a 70-year human life span) for Korean population was estimated to be $2.17{\times}10^{-3}$ on the basis of legal maximum residue limit, $4.33{\times}10^5$ on the basis of maximum practical residue level and $5.10{\times}10^{-6}$ on the basis of mean practical residue level of examined pesticides, all of which exceeded the negligible risk standard $1{\times}10^{-6}$ of US EPA. A systematic follow-up study on those oncogenic pesticides should be undertaken in order to mitigate the people's worry about the cancer risk by the abuse of pesticides in food production.

  • PDF

Evaluation of Residues of Fungicide Azoxystrobin in Radish based on Plant Back Interval Experiment (식물후방식재기간(PBI) 시험에 기반한 살균제 Azoxystrobin의 알타리무 중 잔류량 평가)

  • Yoon, Ji Hyun;Lim, Da Jung;Kim, Seon Wook;Kim, In Seon
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • BACKGROUND: The pesticide residue in rotational crop is one of the main concerns to agricultural products because it has the potentiality of violating positive list system (PLS). Thus, the crops used for the rotational cultivation should be considered the pesticide residue patterns to meet the PLS guideline. In this study, we evaluated the residue patterns of fungicide azoxystrobin in radish based on plant back interval (PBI) experiment. METHODS AND RESULTS: Azoxystrobin was treated onto greenhouse soil at 217 g a.i./10a in two different regions. Radishes were sown onto the soil 30 and 60 days after azoxystrobin treatment. The soil and plant samples were subjected to a modified QuEChERS method and LC/MS/MS analyses to determine the residues of azoxystrobin. The methods were validated to meet the guidelines of the pesticide residue analysis recommended by the Rural Development Administration, Republic of Korea. Azoxystrobin was dissipated significantly in soil during the experimental period and found as a level less than 0.01 mg/kg in radish 30 and 60 days after treatment. Azoxystrobin residues in radish samples were lower than the maximum residue limit (MRL) for root vegetables. CONCLUSION(S): This study suggests 30 days as a PBI for rotational cultivation of radish in greenhouse soil that had been treated with azoxystrobin at a level of 217 g a.i./10a.

Utilization of Sunflower Crop Residues as Feed in Small Ruminants

  • Rasool, Ejaz;Khan, M.F.;Nawaz, M.;Rafiq, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.3
    • /
    • pp.272-276
    • /
    • 1998
  • Sheep and goats in Pakistan have not been able to produce to the best of their potential. This may primarily be attributed to under feeding and malnutrition. Ranges have been depleted due to overgrazing and mismanagement and are not in position to feed the existing small ruminant population. To overcome the shortage of good quality fodder and balanced feed supply, the alternate means like cereal straws and other crop residues are being commonly used. Sunflower crop residues like stalks and heads provide a good quality forage for livestock. These crop byproducts are rich in crude protein and lower in crude fibre. Their inclusion in the diet of small ruminants at 20, 30 and 40 percent levels in ration has shown significantly (p < 0.05) increased feed intake and weight gain. Daily feed intake was 1,130, 1,180 and 1,750 g for sunflower crop residue, soybean crop residue and wheat straw, respectively, when added at the rate of 20 percent in the ration. The drymatter digestibility of sunflower, soybean crop residues and wheat straw was also comparable. The maximum performance of the animals was observed at the 20 percent level of inclusion of sunflower crop residue in the diet.

A Safety Survey of Pesticide Residues in Fruit Products Circulated in Chungcheongnam-do Province, Korea (충남도내 유통 과일류의 잔류농약 안전성 조사)

  • Lee, Kang-Bum;Kim, Nam-Woo;Song, Nak-Soo;Lee, Jung-Ho;Jung, Sang-Mi;Shin, Myoung-Hee;Choi, Seon-Sil;Kim, Ji-Hee;Sung, Si-Youl
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.5
    • /
    • pp.421-430
    • /
    • 2019
  • In this study, 195 pesticide residues in fruit samples (n=150) at local markets in Chungcheongnam-do Chungnam, Korea were monitored using a multi-residue method combined with GC-MS/MS and LCMS/MS. Among 150 fruit samples, 40 types of pesticides were detected in 63 samples and the detection rate was 42.0%. However, the amounts were below the maximum residue limit (MRL). Detection rates for pesticides in each thpe of fruit were as follows ; citrus fruits (55.2%), pome fruits (41.3%), berries (38.7%) and stone fruits (36.0%). Although the sample size was small (n=2), pesticide residues were not detected in tropical fruits. Occurrences of detection of pesticide residues in apple showed the highest level, and mainly, insecticides were detected most frequently. The most commonly detected pesticides residues were bifenthrin (21), pyraclostrobin (17), novaluron (13), boscalid (10), chlorfenapyr (9), trifloxystrobin (9), furathiocarb (9), acetamiprid (8) and chlorpyrifos (8). Five types of residual pesticides (bifenthrin, chlorfenapyr, deltamethrin, fenpropathrin and fenvalerate) were detected in quince, and out of these five, fenpropathrin exceeded the MRL based on the Positive List System (PLS). These results suggested that pesticide residues in fruit samples should be continuously monitored, although residue levels in 63 other fruit samples were evaluated as being within a safe level.

Research of pesticide residue of domestic Lentinula edodes related with the positive list system (농약 허용물질목록 관리제도와 연계한 국내산 표고 잔류농약 실태 조사)

  • Kim, Kyung-Je;Koh, Young-Woo;Im, Seung-Bin;Jin, Seong-Woo;Ha, Neul-I;Jeong, Hee-Gyeong;Jeong, Sang-Wook;Yun, Kyeong-Won;Seo, Kyoung-Sun
    • Journal of Mushroom
    • /
    • v.18 no.4
    • /
    • pp.380-386
    • /
    • 2020
  • The study was conducted for the safety evaluation of 320 pesticide residues in 768 Lentinula edodes fruit body samples and 143 L. edodes media samples, which are distributed nationwide in South Korea. The monitoring method was the second of the multi-residue methods in the Korean Food Code. GC-ECD, GC-NPD, and GC-MSD were used as evaluation equipment for analysis. Single-analysis of the target pesticides was performed for mepiquat chloride. Through the analysis of collected L. edodes samples, pesticide residues were detected in total seven cases, including four L. edodes fruit body samples and three L. edodes media samples. The detected pesticide residues were carbendazim, diflubenzuron, fluopyram, and dinotefuran. In this study, carbendazim was detected in three L. edodes fruit body samples and one L. edodes media sample. The detected amount of carbendazim was 0.056, 0.17, 0.043, and 0.09 mg/kg, respectively. The amount of carbendazim in the collected L. edodes samples was detected below the MRLs (maximum residue level). The detected amounts of fluopyram and dinotefuran were 0.068 mg/kg and 0.06 mg/kg, respectively. Two pesticide residues were detected in the medium in one case. Mepiquat chloride was not detected in this study. These results suggested that residual pesticides were detected in a small number of collected L. edodes. However, the PLS for unregistered pesticides MRL was 0.01 ppm; therefore, we have to conduct research on preparing safety standards for mushrooms, including L. edodes.

Assessment of the Residues of Benfuresate and Oxolinic Acid in Crops (Benfuresate와 Oxolinic Acid의 작물체중 잔류량 평가)

  • Park, Dong-Sik;Yang, Jae-E.;Han, Dae-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.3
    • /
    • pp.312-318
    • /
    • 1995
  • Residues of benfuresate in rice and oxolinic acid in Chinese cabbage were determined through the field experiments in order to establish the safe use and the maximum residue limit(MRL) of these pesticides in Korea. The herbicide benfuresate powder was sprayed into the paddy field with a level of 0.6kg(active ingredient)/ha and rice (Oryza sativa L.) was grown. At harvest, residues of benfuresate in brown rice and stem were analyzed using gas chromatograph. The residue of oxolinic acid in Chinese cabbage (Brassica campestris subsp. napus var pekinesis MAKINO) was analyzed using HPLC after foliar-spraying this fungicide into the cabbages at a level of 15kg/ha. The recovery efficiencies of benfuresate and oxolinic acid were 87-89% and 90-95%, respectively. The respective residues of benfuresate in rice and oxolinic acid in Chinese cabbage were in the range of 0.27-0.46 mg/kg and 0.23-1.53kg/kg. Residual concentrations of these pesticides in crops increased with the increased application frequencies, followed the first-order kinetics and linearly decreased with time. The highest residue of 1.53 mg/kg of oxolinic acid was observed when this fungicide was sprayed six times until three days prior to harvest, but this level was far lower t㏊n 5 mg/kg, which is the maximum residue limit(MRL) set by FAO/WHO.

  • PDF