• Title/Summary/Keyword: Maximum power point tracking

Search Result 489, Processing Time 0.035 seconds

A Study on the Development of Hybrid Micro Power Sources for the IMT2000 (IMT2000을 위한 혼성마이크로 동력원 개발에 관한 연구)

  • Kim il-Song;Youn Myung-Joong;Kim Jung-Han;Ju Hun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.203-210
    • /
    • 2005
  • A study on the hybrid micro power source for the IMT2000 application has been presented. The hybrid micro power source is composed of solar cell, super-capacitor and battery. To compensate for the pulse loader of the IMT2000 application, the super-capacitor is connected through the lithium-lon battery to absorb the pulse discharge current. The solar cell provides the additional current to compensate for the depleted current and it is controlled to operate at the maximum power point voltage. A novel maximum power point tracking method is presented to operate at the pulse discharge load conditions and verified to have superior tracking performance through experiment. The controller design for the hybrid micro power source has been presented and verified through experiment.

MPPT Strategy to Improve Photovoltaic Power Generation Efficiency in Partial Shadows (부분 음영에서의 태양광 발전 효율을 높이기 위한 MPPT 전략)

  • Heo, Cheol-Young;Kim, Yong-Rae;Lee, Young-Kwoun;Lee, Dong-Yun;Choy, Ick;Choi, Ju-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.2
    • /
    • pp.1-9
    • /
    • 2019
  • In order to increase the power generation efficiency of the photovoltaic system, a new algorithm that can follow the maximum power point of the photovoltaic power generation system having nonlinear output characteristics is proposed. Conventional maximum power point tracking (MPPT) algorithms such as Perturbation and Observation (P&O) and InCond (Increment and Conductance) schemes can not find the global maximum power point at a plurality of pole points in the unmatched state of unbalanced PV modules. However, even if the global maximum power point is found at a plurality of pole points, the global maximum power that can not be the real maximum power by the photovoltaic generation system. In order to solve this problem, a few PV companies propose installing several small PV inverters instead of if big one. However, since this will require additional costs, we herein propose a Multi-MPPT system using individual 3-point MPPT to track true MPPT at a plurality of pole points in the unmatched state of unbalanced PV modules.

Maximum Power Tracking Control of Solar Cell by using the Step-down Chopper (강압쵸퍼에 의한 태양전지의 최대출력점 추적제어)

  • Sung, Nark-Kuy;Lee, Seung-Hwan;Kim, Sung-Nam;Kim, Yong-Joo;Han, Kyung-Hee;Chung, Yon-Tack
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.351-353
    • /
    • 1994
  • The solar cell should be operated at the maximum power point every instant. Because this maximum power point is fluctuating due to the change in the insolation and temperature. In this paper, we propose a new maximum power' point tracker by using the microprocessor. The proposed step-down chopper system tracks always the maximum power point, regardless of the change in the insolation, temperature and load.

  • PDF

Maximum Power Point Tracking without Current Sensor for Small Scale Photovoltaic Power System

  • Kasa Nobuyuki;Iida Takahiko;Majumdar Gourab
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.631-634
    • /
    • 2001
  • This paper presents a maximum power point tracking without a current sensor for a small scale photovoltaic power system. The small scale photovoltaic power systems are used in parallel, and so the cost and the reliability are strongly demanded. In the proposed inverter, the current is controlled with open loop, and then the power of photovoltaic array is calculated by the equation using the voltage of the photovoltaic array. Therefore, the system can obtain the power by detecting only the voltage of the photovoltaic array. As a result, we may obtain the performance of the MPPT with a current sensor as well as with a current sensor.

  • PDF

A Design of Power Circuit and LCL Filter for Switching Mode PV Simulator (스위칭방식 PV Simulator의 전력회로와 LCL필터 설계)

  • Lee, Sung-Min;Yu, Tae-Sik;Kim, Hyo-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.431-437
    • /
    • 2012
  • PV simulators are essential equipment for testing power conditioning systems (PCS) which are one of an important part in PV generator systems, for testing before shipment. High dynamic PV simulator is required since MPPT(Maximum Power Point Tracking) test procedure has been established by EN50530 regulation recently. Most high quality PV simulator prevailed in the market is linear type which however has low efficiency. This paper proposes design guide lines for the power stage and LCL type filter cooperating with a switching mode PV simulator that shows high efficiency and very low power consumption. Proposed theory is verified by experiment.

A Study on Photovoltaic Generation System by DC-DC converter (DC-DC 컨버어터에 의한 태양광 발전 시스템에 관한 연구)

  • Won, Chung-Yuen;Yang, Seung-Ho;Kim, Hack-Seong;Kim, Sei-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.486-491
    • /
    • 1991
  • The photovoltaic modules have each maximum power point, which depending on the intensity of sunlight, modules temperature and etc. Cuk converter is used to obtain the maximum charging power from photovoltaic modules to storage batteries. This paper proposed to a new tracking control method by detecting its current and voltage in photovoltaic power generation system controlled by microprocessor, in order to operate at the maximum power point tracking(MPPT) even if the sunlight and the temperature are varied.

  • PDF

A Novel Voltage Control MPPT Algorithm using Variable Step Size based on P&O Method (가변 스텝 P&O 기반 전압제어 MPPT 알고리즘에 관한 연구)

  • Kim, Jichan;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.29-36
    • /
    • 2020
  • In this study, a variable step algorithm is proposed on the basis of the perturb and observe method. The proposed algorithm can follow the maximum power point (MPP) quickly when solar irradiance changes rapidly. The proposed technique uses the voltage change characteristic at the MPP when the environment changes because of insolation or temperature. The MPP is tracked through the voltage control using a variable step method. This method determines the sudden change of solar irradiance by setting the threshold value and operates in fast tracking mode to track the MPP rapidly. When the operation point reaches the MPP, the mode switches to the variable step mode to minimize the steady state error. In addition, the output disturbance is decreased through the optimization of the control method design. The performance of the proposed MPPT algorithm is verified through simulation and experiment.

Adaptive Partial Shading Determinant Algorithm for Solar Array Systems

  • Wellawatta, Thusitha Randima;Choi, Sung-Jin
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1566-1574
    • /
    • 2019
  • Maximum power point tracking (MPPT) under the partial shading condition is a challenging research topic for photovoltaic systems. Shaded photo-voltaic module result in complex peak patterns on the power versus voltage curve which can misguide classical MPPT algorithms. Thus, various kinds of global MPPT algorithms have been studied. These have typically consisted of partial shading detection, global peak search and MPPT. The conventional partial shading detection algorithm aims to detect all of the occurrences of partial shading. This results in excessive execution of global peak searches and discontinuous operation of the MPPT. This in turn, reduces the achievable power for the PV module. Based on a theoretical investigation of power verse voltage curve patterns under various partial shading conditions, it is realized that not all the occurrences of partial shadings require a global peak search. Thus, an intelligent partial shading detection algorithm that provides exact identification of global peak search necessity is essential for the efficient utilization of solar energy resources. This paper presents a new partial shading determinant algorithm utilizing adaptive threshold levels. Conventional methods tend to be too sensitive to sharp shading patterns but insensitive to smooth patterns. However, the proposed algorithm always shows superb performance, regardless of the partial shading patterns.

Maximum Power Point Tracking Technique of PV System for the Tracking of Open Voltage accoding to Solar Module of Temperatur Influence (태양광 모듈 온도 영향에 따른 개방전압 추종을 위한 PV 시스템의 최대 전력 점 추종 기법)

  • Seo, Jung-Min;Lee, Woo-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.4-6
    • /
    • 2020
  • 태양광 모듈은 일사량과 온도에 의해 P-V 및 I-V의 특성이 변하여 최대 전력 점 추종 기업(MPPT, Maximum Power Point Tracking)이 필요하다. 기존의 기법들의 경우 모듈의 온도로 인해 개방전압이 변하거나 음영이 발생하면 태양광 모듈의 최대 전력 점을 추종하지 못한다. 본 논문에서는 태양광 패널에서의 P-V 및 I-V의 상관관계와 온도 변화에 대한 태양광 모듈의 최대 전력 점을 추종하는 기법을 제안한다. 본 논문에서 제안된 제어기법은 3kW 태양광 인버터 시스템을 구성하여 시뮬레이션을 통해 타당성을 검증하였다.

  • PDF

A Noble Maximum Power Point Tracking Algorithm for Photovoltaic System without Chopper (초퍼 없는 태양광 발전시스템을 위한 새로운 최대전력점 추적 알고리즘)

  • 李 相 庸;崔 海 龍;高 再 錫;姜 秉 憙;李 明 彦;崔 圭 夏
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.171-177
    • /
    • 2002
  • The Photovoltaic systems with solar cell way Provide electrical energy to the utility/consumers, which are becoming one of the promising energy substitutes. The photovoltaic system can be classified into two types : One is the stand-alone type, and the other utility interactive one. The latter can return the generated power to the utility, but the former can't. The utility interactive systems are so valuable for peak power cut in summer season. In the photovoltaic systems the maximum power point tracking (MPPT) has been studied for the increase of the generating energy of the photovoltaic system. There are many control methods of MPPT, but a new MPPT algorithm is proposed to overcome the disadvantages of the conventional ones, and as a result the proposed method enables to improve both tracking ability and generating efficiency of photo voltaic system without DC chopper.