• Title/Summary/Keyword: Maximum power point

Search Result 915, Processing Time 0.024 seconds

KAUSAT-5 Development and Verification based on 3U Cubesat Standard Platform (3U 큐브위성 표준 플랫폼에 기반한 한누리 5호 개발 및 검증)

  • Song, Sua;Lee, Soo-Yeon;Kim, Hong-Rae;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.686-696
    • /
    • 2017
  • The major objective of this study is to develop and verify the KAUSAT-5 based on the modular 3U CubeSat standard platform. In the mechanical system design of a 3U standard platform, subsystem and micro equipment functions/performance should be integrated and miniaturized on micro-sized PCBs and electrical capability was maximized to accommodate multiple payloads. KAUSAT-5 is 3U-sized Cubesat which will be operated in Low Earth Orbit(LEO), which implements mainly two scientific missions; one is to observe the Earth through infrared camera and the other is to measure space radiation with a Geiger Muller tube. An additional mission is to verify the equipment(device) such as VSCMG and fuzzy logic-based MPPT internally developed. The results of ETB, qualification and acceptance level environmental tests were shown to verify standard platform and KAUSAT-5 Cubesat.

Field monitoring of splitting failure for surrounding rock masses and applications of energy dissipation model

  • Wang, Zhi-shen;Li, Yong;Zhu, Wei-shen;Xue, Yi-guo;Jiang, Bei;Sun, Yan-bo
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.595-609
    • /
    • 2017
  • Due to high in-situ stress and brittleness of rock mass, the surrounding rock masses of underground caverns are prone to appear splitting failure. In this paper, a kind of loading-unloading variable elastic modulus model has been initially proposed and developed based on energy dissipation principle, and the stress state of elements has been determined by a splitting failure criterion. Then the underground caverns of Dagangshan hydropower station is analyzed using the above model. For comparing with the monitoring results, the entire process of rock splitting failure has been achieved through monitoring the splitting failure on side walls of large-scale caverns in Dagangshan via borehole TV, micro-meter and deformation resistivity instrument. It shows that the maximum depth of splitting area in the downstream sidewall of the main power house is approximately 14 m, which is close to the numerical results, about 12.5 m based on the energy dissipation model. As monitoring result, the calculation indicates that the key point displacement of caverns decreases firstly with the distance from main powerhouse downstream side wall rising, and then increases, because this area gets close to the side wall of main transformer house and another smaller splitting zone formed here. Therefore it is concluded that the energy dissipation model can preferably present deformation and fracture zones in engineering, and be very useful for similar projects.

Phylogenetic Diversity of Dominant Bacterial and Archaeal Communities in Plant-Microbial Fuel Cells Using Rice Plants

  • Ahn, Jae-Hyung;Jeong, Woo-Suk;Choi, Min-Young;Kim, Byung-Yong;Song, Jaekyeong;Weon, Hang-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1707-1718
    • /
    • 2014
  • In this study, the phylogenetic diversities of bacterial and archaeal communities in a plant-microbial fuel cell (P-MFC) were investigated together with the environmental parameters, affecting its performance by using rice as a model plant. The beneficial effect of the plant appeared only during a certain period of the rice-growing season, at which point the maximum power density was approximately 3-fold higher with rice plants. The temperature, electrical conductivity (EC), and pH in the cathodic and anodic compartments changed considerably during the rice-growing season, and a higher temperature, reduced difference in pH between the cathodic and anodic compartments, and higher EC were advantageous to the performance of the P-MFC. A 16S rRNA pyrosequencing analysis showed that the 16S rRNAs of Deltaproteobacteria and those of Gammaproteobacteria were enriched on the anodes and the cathodes, respectively, when the electrical circuit was connected. At the species level, the operational taxonomic units (OTUs) related to Rhizobiales, Geobacter, Myxococcus, Deferrisoma, and Desulfobulbus were enriched on the anodes, while an OTU related to Acidiferrobacter thiooxydans occupied the highest proportion on the cathodes and occurred only when the circuit was connected. Furthermore, the connection of the electrical circuit decreased the abundance of 16S rRNAs of acetotrophic methanogens and increased that of hydrogenotrophic methanogens. The control of these physicochemical and microbiological factors is expected to be able to improve the performance of P-MFCs.

Damages of Etched (Ba, Sr) $TiO_3$Thin Films by Inductively Coupled Plasmas (유도결합 플라즈마에 의한 (Ba,Sr)$TiO_3$박막의 식각 손상에 관한 연구)

  • 최성기;김창일;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.785-791
    • /
    • 2001
  • High dielectric (Ba, Sr) TiO$_3$ thin films were etched in an inductively coupled plasma (ICP) as a function of Cl$_2$/Ar mixing ration. Under Cl$_2$(20)/Ar(80), the maximum etch rate of the BST films was 400 $\AA$/mim and selectivities of BST to Pt and PR were obtained 0.4 and 0.2, respectively. Etching products were redeposited on the surface of BST and resulted in varying the nature of crystallinity. Therefore, we investigated the etched surface of BST by x-ray photoelectron spectroscopy (XPS) atomic force microscopy (AFM) and x-ray diffraction (XRD). From the result of XPS analysis, we found that residues of Ba-Cl and Ti-Cl bonds remained on the surface of the etched BST for high boiling point. The morphology of the etched surfact was analyzed by AFM. A smoothsurface(roughness ~2.8nm) ws observed under Cl$_2$(20)/Ar(80), rf power of 600 W, dc bias voltage of -250 V and pressure of 10 mTorr. This changed the nature of the crystallinity of BST. From the result of XRD analysis, the crystallinities of the etched BST film under Ar only and Cl$_2$(20)/Ar(80) were maintained as similar to as-deposited BST. However, intensity of BST(100) orientation under Cl$_2$ only plasma was abruptly decreased. This indicated that CI compounds were redeposited on the etched BST surface and resulted in changed of the crystallinity of BST during the etch process.

  • PDF

An Empiricl Study on the Learnign of HMM-Net Classifiers Using ML/MMSE Method (ML/MMSE를 이용한 HMM-Net 분류기의 학습에 대한 실험적 고찰)

  • Kim, Sang-Woon;Shin, Seong-Hyo
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.6
    • /
    • pp.44-51
    • /
    • 1999
  • The HMM-Net is a neural network architecture that implements the computation of output probabilities of a hidden Markov model (HMM). The architecture is developed for the purpose of combining the discriminant power of neural networks with the time-domain modeling capability of HMMs. Criteria of maximum likehood(ML) and minimization of mean squared error(MMSE) are used for learning HMM-Net classifiers. The criterion MMSE is better than ML when initial learning condition is well established. However Ml is more useful one when the condition is incomplete[3]. Therefore we propose an efficient learning method of HMM-Net classifiers using a hybrid criterion(ML/MMSE). In the method, we begin a learning with ML in order to get a stable start-point. After then, we continue the learning with MMSE to search an optimal or near-optimal solution. Experimental results for the isolated numeric digits from /0/ to /9/, a training and testing time-series pattern set, show that the performance of the proposed method is better than the others in the respects of learning and recognition rates.

  • PDF

Implementation of a Coded Aperture Imaging System for Gamma Measurement and Experimental Feasibility Tests

  • Kim, Kwangdon;Lee, Hakjae;Jang, Jinwook;Chung, Yonghyun;Lee, Donghoon;Park, Chanwoo;Joung, Jinhun;Kim, Yongkwon;Lee, Kisung
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.1
    • /
    • pp.66-70
    • /
    • 2017
  • Radioactive materials are used in medicine, non-destructive testing, and nuclear plants. Source localization is especially important during nuclear decommissioning and decontamination because the actual location of the radioactive source within nuclear waste is often unknown. The coded-aperture imaging technique started with space exploration and moved into X-ray and gamma ray imaging, which have imaging process characteristics similar to each other. In this study, we simulated $21{\times}21$ and $37{\times}37$ coded aperture collimators based on a modified uniformly redundant array (MURA) pattern to make a gamma imaging system that can localize a gamma-ray source. We designed a $21{\times}21$ coded aperture collimator that matches our gamma imaging detector and did feasibility experiments with the coded aperture imaging system. We evaluated the performance of each collimator, from 2 mm to 10 mm thicknesses (at 2 mm intervals) using root mean square error (RMSE) and sensitivity in a simulation. In experimental results, the full width half maximum (FWHM) of the point source was $5.09^{\circ}$ at the center and $4.82^{\circ}$ at the location of the source was $9^{\circ}$. We will continue to improve the decoding algorithm and optimize the collimator for high-energy gamma rays emitted from a nuclear power plant.

A Real-Time Simulation Method for Stand-Alone PV Generation Systems using RTDS (RTDS를 이용한 단독운전 태양광 발전시스템의 실시간 시뮬레이션)

  • Kim, Bong-Tae;Lee, Jae-Deuk;Park, Min-Won;Seong, Ki-Chul;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.190-193
    • /
    • 2001
  • In order to verify the efficiency or availability and stability of photovoltaic(PV) generation systems, huge system apparatuses are needed, in general, in which an actual size of solar panel, a type of converter system and some amount of load facilities should be installed in a particular location. It is also hardly possible to compare a Maximum Power Point Tracking (MPPT) control scheme with others under the same weather and load conditions in an actual PV generation system. The only and a possible way to bring above-mentioned problem to be solved is to realize a transient simulation scheme for PV generation systems using real weather conditions such as insolation and surface temperature of solar cell. The authors, in this paper, introduces a novel simulation method, which is based on a real-time digital simulator (RTDS), for PV generation systems under the real weather conditions. Firstly, VI characteristic equation of a solar cell is developed as an empirical formula and reconstructed in the RTDS system, then the real data of weather conditions are interfaced to the analogue inputs of the RTDS. The outcomes of the simulation demonstrate the effectiveness of the proposed simulation scheme in this paper. The results shows that the cost effective verifying for the efficiency or availability and stability of PV generation systems and the comparison research of various control schemes like MPPT under the same real weather conditions are possible.

  • PDF

Analysis on the performance and internal flow of a tubular type hydro turbine for vessel cooling system

  • Chen, Zhenmu;Kim, Joo-Cheong;Im, Myeong-Hwan;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1244-1250
    • /
    • 2014
  • The temperature of the main engine cabin of commercial vessel is very high. The material SS-316L undergoes creep damage at temperatures exceeding $450^{\circ}C$. It is essential to maintain the highly stressed engine cabin below the creep regime. Hence, seawater is employed in this kind of maritime vehicles as cooling liquid. It obtains the thermal energy at the cooling pipe line after passing through main engine cooling system. To harness the energy in the seawater, a turbine can be installed to absorb the energy in the seawater before being released into the sea. In this study, a cooling pipe line is selected to apply the tubular type hydro turbine for transferring the energy. Numerical analysis for investigating the performance and the internal flow characteristics of the tubular turbine is conducted. The results show that the maximum efficiency of 85.8% is achieved although the efficiency drops rapidly at partial flow rate condition. The efficiency descends slowly at the condition of excess flow rate. There is a relatively wide operating range of flow rate of this turbine to keep high efficiency at the excess flow rate condition. For the internal flow of the turbine, there is uniform streamline on the suction and pressure sides of the blade at the design point. However, the secondary flow appears at the suction and pressure sidesat the excess flow rate.In addition, it appears only at pressure side at the partial flow rate condition.

Flow Characteristics of the Boundary Layer Developing over a Turbine Blade Suction Surface (터빈 동익 흡입면에서 발달하는 경계층의 유동특성)

  • Chang, Sung Il;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.795-803
    • /
    • 2015
  • The boundary layer developing over the suction surface of a first-stage turbine blade for power generation has been investigated in this study. For three locations selected in the region where local thermal load changes dramatically, mean velocity, turbulence intensity, and one-dimensional energy spectrum are measured with a hot-wire anemometer. The results show that the suction-surface boundary layer suffers a transition from a laminar flow to a turbulent one. This transition is confirmed to be a "separated-flow transition", which usually occurs in the shear layer over a separation bubble. The local minimum thermal load on the suction surface is found at the initiation point of the transition, whereas the local maximum thermal load is observed at the location of very high near-wall turbulence intensity after the transition process. Frequency characteristics of turbulent kinetic energy before and after the transition are understood clearly from the energy spectrum data.

Development of The New High Specific Speed Fixed Blade Turbine Runner

  • Skotak, Ales;Mikulasek, Josef;Obrovsky, Jiri
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.392-399
    • /
    • 2009
  • The paper concerns the description of the step by step development process of the new fixed blade runner called "Mixer" suitable for the uprating of the Francis turbines units installed at the older low head hydropower plants. In the paper the details of hydraulic and mechanical design are presented. Since the rotational speed of the new runner is significantly higher then the rotational speed of the original Francis one, the direct coupling of the turbine to the generator can be applied. The maximum efficiency at prescribed operational point was reached by the geometry optimization of two most important components. In the first step the optimization of the draft tube geometry was carried out. The condition for the draft tube geometry optimization was to design the new geometry of the draft tube within the original bad draft tube shape without any extensive civil works. The runner blade geometry optimization was carried out on the runner coupled with the draft tube domain. The blade geometry of the runner was optimized using automatic direct search optimization procedure. The method used for the objective function minimum search is a kind of the Nelder-Mead simplex method. The objective function concerns efficiency, required net head and cavitation features. After successful hydraulic design the modal and stress analysis was carried out on the prototype scale runner. The static pressure distribution from flow simulation was used as a load condition. The modal analysis in air and in water was carried out and the results were compared. The final runner was manufactured in model scale and it is going to be tested in hydraulic laboratory. Since the turbine with the fixed blade runner does not allow double regulation like in case of full Kaplan turbine, it can be profitably used mainly at power plants with smaller changes of operational conditions or in case with more units installed. The advantages are simple manufacturing, installation and therefore lower expenses and short delivery time for turbine uprating.