Browse > Article
http://dx.doi.org/10.4014/jmb.1408.08053

Phylogenetic Diversity of Dominant Bacterial and Archaeal Communities in Plant-Microbial Fuel Cells Using Rice Plants  

Ahn, Jae-Hyung (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration)
Jeong, Woo-Suk (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration)
Choi, Min-Young (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration)
Kim, Byung-Yong (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration)
Song, Jaekyeong (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration)
Weon, Hang-Yeon (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.12, 2014 , pp. 1707-1718 More about this Journal
Abstract
In this study, the phylogenetic diversities of bacterial and archaeal communities in a plant-microbial fuel cell (P-MFC) were investigated together with the environmental parameters, affecting its performance by using rice as a model plant. The beneficial effect of the plant appeared only during a certain period of the rice-growing season, at which point the maximum power density was approximately 3-fold higher with rice plants. The temperature, electrical conductivity (EC), and pH in the cathodic and anodic compartments changed considerably during the rice-growing season, and a higher temperature, reduced difference in pH between the cathodic and anodic compartments, and higher EC were advantageous to the performance of the P-MFC. A 16S rRNA pyrosequencing analysis showed that the 16S rRNAs of Deltaproteobacteria and those of Gammaproteobacteria were enriched on the anodes and the cathodes, respectively, when the electrical circuit was connected. At the species level, the operational taxonomic units (OTUs) related to Rhizobiales, Geobacter, Myxococcus, Deferrisoma, and Desulfobulbus were enriched on the anodes, while an OTU related to Acidiferrobacter thiooxydans occupied the highest proportion on the cathodes and occurred only when the circuit was connected. Furthermore, the connection of the electrical circuit decreased the abundance of 16S rRNAs of acetotrophic methanogens and increased that of hydrogenotrophic methanogens. The control of these physicochemical and microbiological factors is expected to be able to improve the performance of P-MFCs.
Keywords
Plant-microbial fuel cell; bacterial community; archaeal community; 16S rRNA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ahn JH, Choi MY, Kim BY, Lee JS, Song J, Kim GY, Weon HY. 2014. Effects of water-saving irrigation on emissions of greenhouse gases and prokaryotic communities in rice paddy soil. Microb. Ecol. 68: 271-283.   DOI   ScienceOn
2 Aklujkar M, Young N, Holmes D, Chavan M, Risso C, Kiss H, et al. 2010. The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III)-reducing subsurface environments. BMC Genomics. 11: 490.   DOI   ScienceOn
3 Arends JA, Blondeel E, Tennison S, Boon N, Verstraete W. 2012. Suitability of granular carbon as an anode material for sediment microbial fuel cells. J. Soils Sediments 12: 1197-1206.   DOI
4 Hallberg K, Hedrich S, Johnson DB. 2011. Acidiferrobacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermotolerant, facultatively anaerobic iron- and sulfur-oxidizer of the family Ectothiorhodospiraceae. Extremophiles 15: 271-279.   DOI
5 He Z, Angenent LT. 2006. Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18: 2009-2015.   DOI   ScienceOn
6 Helder M, Strik D, Hamelers H, Buisman C. 2012. The flatplate plant-microbial fuel cell: the effect of a new design on internal resistances. Biotechnol. Biofuels 5: 1-11.   DOI   ScienceOn
7 Holmes DE, Bond DR, Lovley DR. 2004. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl. Environ. Microbiol. 70: 1234-1237.   DOI   ScienceOn
8 Holmes DE, O'Neil RA, Vrionis HA, N'Guessan LA, Ortiz- Bernad I, Larrahondo MJ, et al. 2007. Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)- reducing subsurface environments. ISME J. 1: 663-677.   DOI   ScienceOn
9 Hong SW, Chang IS, Choi YS, Chung TH. 2009. Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell. Bioresour. Technol. 100: 3029-3035.   DOI   ScienceOn
10 Hur M, Kim Y, Song HR, Kim JM, Choi YI, Yi H. 2011. Effect of genetically modified poplars on soil microbial communities during the phytoremediation of waste mine tailings. Appl. Environ. Microbiol. 77: 7611-7619.   DOI   ScienceOn
11 Ishii Si, Hotta Y, Watanabe K. 2008. Methanogenesis versus electrogenesis: morphological and phylogenetic comparisons of microbial communities. Biosci. Biotechnol. Biochem. 72: 286-294.   DOI   ScienceOn
12 Strik DPBTB, Picot M, Buisman CJN, Barriere F. 2013. pH and temperature determine performance of oxygen reducing biocathodes. Electroanalysis 25: 652-655.   DOI   ScienceOn
13 Shehab N, Li D, Amy G, Logan B, Saikaly P. 2013. Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors. Appl. Microbiol. Biotechnol. 97: 9885-9895.   DOI   ScienceOn
14 Slobodkina GB, Reysenbach A-L, Panteleeva AN, Kostrikina NA, Wagner ID, Bonch-Osmolovskaya EA, Slobodkin AI. 2012. Deferrisoma camini gen. nov., sp. nov., a moderately thermophilic, dissimilatory iron(III)-reducing bacterium from a deep-sea hydrothermal vent that forms a distinct phylogenetic branch in the Deltaproteobacteria. Int. J. Syst. Evol. Microbiol. 62: 2463-2468.   DOI   ScienceOn
15 Strik DPBTB, Hamelers HVM, Snel JFH, Buisman CJN. 2008. Green electricity production with living plants and bacteria in a fuel cell. Int. J. Energ. Res. 32: 870-876.   DOI   ScienceOn
16 Strik DPBTB, Timmers RA, Helder M, Steinbusch KJJ, Hamelers HVM, Buisman CJN. 2011. Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol. 29: 41-49.   DOI   ScienceOn
17 Timmers RA, Strik DPBTB, Hamelers HVM, Buisman CJN. 2013. Electricity generation by a novel design tubular plant microbial fuel cell. Biomass Bioenergy 51: 60-67.   DOI   ScienceOn
18 Torres CI, Kato Marcus A, Rittmann BE. 2008. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol. Bioeng. 100: 872-881.   DOI   ScienceOn
19 Bond DR, Holmes DE, Tender LM, Lovley DR. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295: 483-485.   DOI   ScienceOn
20 Bombelli P, Iyer D, Covshoff S, McCormick A, Yunus K, Hibberd J, et al. 2013. Comparison of power output by rice (Oryza sativa) and an associated weed (Echinochloa glabrescens) in vascular plant bio-photovoltaic (VP-BPV) systems. Appl. Microbiol. Biotechnol. 97: 429-438.   DOI   ScienceOn
21 Carbajosa S, Malki M, Caillard R, Lopez MF, Palomares FJ, Martín-Gago JA, et al. 2010. Electrochemical growth of Acidithiobacillus ferrooxidans on a graphite electrode for obtaining a biocathode for direct electrocatalytic reduction of oxygen. Biosens. Bioelectron. 26: 877-880.   DOI   ScienceOn
22 Chiranjeevi P, Chandra R, Mohan SV. 2013. Ecologically engineered submerged and emergent macrophyte based system: an integrated eco-electrogenic design for harnessing power with simultaneous wastewater treatment. Ecol. Eng. 51: 181-190.   DOI   ScienceOn
23 Chiranjeevi P, Mohanakrishna G, Venkata Mohan S. 2012. Rhizosphere mediated electrogenesis with the function of anode placement for harnessing bioenergy through $CO_2$ sequestration. Bioresour. Technol. 124: 364-370.   DOI   ScienceOn
24 Chun J, Kim K, Lee JH, Choi Y. 2010. The analysis of oral microbial communities of wild-type and Toll-like receptor 2- deficient mice using a 454 GS FLX titanium pyrosequencer. BMC Microbiol. 10: 101.   DOI   ScienceOn
25 Conrad R. 2007. Microbial ecology of methanogens and methanotrophs. Adv. Agron. 96: 1-63.   DOI
26 Kiely PD, Regan JM, Logan BE. 2011. The electric picnic: synergistic requirements for exoelectrogenic microbial communities. Curr. Opin. Biotechnol. 22: 378-385.   DOI   ScienceOn
27 Kaku N, Yonezawa N, Kodama Y, Watanabe K. 2008. Plant/ microbe cooperation for electricity generation in a rice paddy field. Appl. Microbiol. Biotechnol. 79: 43-49.   DOI
28 Kato S, Hashimoto K, Watanabe K. 2012. Microbial interspecies electron transfer via electric currents through conductive minerals. Proc. Natl. Acad. Sci. USA 109: 10042-10046.   DOI
29 Kendall MM, Wardlaw GD, Tang CF, Bonin AS, Liu Y, Valentine DL. 2007. Diversity of Archaea in marine sediments from Skan Bay, Alaska, including cultivated methanogens, and description of Methanogenium boonei sp. nov. Appl. Environ. Microbiol. 73: 407-414.   DOI   ScienceOn
30 Kodama Y, Watanabe K. 2011. Rhizomicrobium electricum sp. nov., a facultatively anaerobic, fermentative, prosthecate bacterium isolated from a cellulose-fed microbial fuel cell. Int. J. Syst. Evol. Microbiol. 61: 1781-1785.   DOI   ScienceOn
31 Kuever J, Rainey FA, Widdel F. 2005. Family II. Desulfobulbaceae fam. nov., pp. 988-999. In Brenner DJ, Krieg NR, Garrity GM, Staley JT, Boone DR, Vos P, et al. (eds.). Bergey's Manual of Systematic Bacteriology. Springer, New York.
32 Liu H, Cheng S, Logan BE. 2005. Power generation in fedbatch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol. 39: 5488-5493.   DOI   ScienceOn
33 Liu S, Song H, Li X, Yang F. 2013. Power generation enhancement by utilizing plant photosynthate in microbial fuel cell coupled constructed wetland system. Int. J. Photoenergy 2013: 10.
34 Deng H, Chen Z, Zhao F. 2012. Energy from plants and microorganisms: progress in plant-microbial fuel cells. ChemSusChem. 5: 1006-1011.   DOI   ScienceOn
35 Xia X, Sun Y, Liang P, Huang X. 2012. Long-term effect of set potential on biocathodes in microbial fuel cells: electrochemical and phylogenetic characterization. Bioresour. Technol. 120: 26-33.   DOI
36 Zhang Y, Sun J, Hu Y, Li S, Xu Q. 2012. Bio-cathode materials evaluation in microbial fuel cells: a comparison of graphite felt, carbon paper and stainless steel mesh materials. Int. J. Hydrogen Energy 37: 16935-16942.   DOI   ScienceOn
37 De Schamphelaire L, Boeckx P, Verstraete W. 2010. Evaluation of biocathodes in freshwater and brackish sediment microbial fuel cells. Appl. Microbiol. Biotechnol. 87: 1675-1687.   DOI
38 De Schamphelaire L, Cabezas A, Marzorati M, Friedrich MW, Boon N, Verstraete W. 2010. Microbial community analysis of anodes from sediment microbial fuel cells powered by rhizodeposits of living rice plants. Appl. Environ. Microbiol. 76: 2002-2008.   DOI   ScienceOn
39 De Schamphelaire L, Rabaey K, Boeckx P, Boon N, Verstraete W. 2008. Outlook for benefits of sediment microbial fuel cells with two bio-electrodes. Microb. Biotechnol. 1: 446-462.   DOI   ScienceOn
40 Dridi B, Fardeau M-L, Ollivier B, Raoult D, Drancourt M. 2012. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int. J. Syst. Evol. Microbiol. 62: 1902-1907.   DOI
41 Franks AE, Nevin KP, Jia H, Izallalen M, Woodard TL, Lovley DR. 2009. Novel strategy for three-dimensional realtime imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm. Energ. Environ. Sci. 2: 113-119.   DOI
42 Gil G -C, Chang I-S, Kim BH, Kim M , Jang J -K , Park HS, Kim HJ. 2003. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron. 18: 327-334.   DOI   ScienceOn
43 Logan BE, Regan JM. 2006. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 14: 512-518.   DOI   ScienceOn
44 Liu S, Song H, Wei S, Yang F, Li X. 2014. Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland - Microbial fuel cell systems. Bioresour. Technol. 166: 575-583.   DOI   ScienceOn
45 Logan BE. 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7: 375-381.   DOI   ScienceOn
46 Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, et al. 2006. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40: 5181-5192.   DOI   ScienceOn
47 Nakasono S, Matsumoto N, Saiki H. 1997. Electrochemical cultivation of Thiobacillus ferrooxidans by potential control. Bioelectrochem. Bioener. 43: 61-66.   DOI   ScienceOn
48 Popat SC, Ki D, Rittmann BE, Torres CI. 2012. Importance of OH transport from cathodes in microbial fuel cells. ChemSusChem 5: 1071-1079.   DOI   ScienceOn
49 Sanford RA, Cole JR, Tiedje JM. 2002. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic Myxobacterium. Appl. Environ. Microbiol. 68: 893-900.   DOI   ScienceOn
50 Schamphelaire LD, Bossche LVd, Dang HS, Hofte M, Boon N, Rabaey K, Verstraete W. 2008. Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ. Sci. Technol. 42: 3053-3058.   DOI   ScienceOn
51 Sun Y, Wei J, Liang P, Huang X. 2012. Microbial community analysis in biocathode microbial fuel cells packed with different materials. AMB Express 2: 21.   DOI   ScienceOn
52 Arends JA, Speeckaert J, Blondeel E, De Vrieze J, Boeckx P, Verstraete W, et al. 2014. Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell. Appl. Microbiol. Biotechnol. 98: 3205-3217.   DOI   ScienceOn
53 De Schamphelaire L, Bossche LVd, Dang HS, Hofte M, Boon N, Rabaey K, Verstraete W. 2008. Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ. Sci. Technol. 42: 3053-3058.   DOI   ScienceOn
54 Holmes DE, Bond DR, O'Neil RA, Reimers CE, Tender LR, Lovley DR. 2004. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb. Ecol. 48: 178-190.   DOI   ScienceOn
55 Kouzuma A, Kasai T, Nakagawa G, Yamamuro A, Abe T, Watanabe K. 2013. Comparative metagenomics of anodeassociated microbiomes developed in rice paddy-field microbial fuel cells. PLoS One 8: e77443.   DOI
56 Rozendal RA, Hamelers HVM, Buisman CJN. 2006. Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol. 40: 5206-5211.   DOI   ScienceOn