• Title/Summary/Keyword: Maximum power

Search Result 6,087, Processing Time 0.032 seconds

A MPPT Control of Photovoltaic System for Current ripple reduce (전류리플 저감을 위한 태양광발전시스템의 최대출력점추적제어)

  • Chung, Choon-Byeong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.496-499
    • /
    • 2006
  • The solar cells should be operated at the maximum power point because its output characteristics are greatly fluctuate on the variations of insolation, temperature and loads. To obtain maximum power from solar cell, photovoltaic system cell power system usually requires maximum power point tracking controller. This paper propose Maximum power point tracking method using zero slope of differential value of maximum power. The power compare method traces to maximum power point rapidly but oscillate on the maximum power point largely, when quantity insolation variation is big. The power compare method is traces to maximum power point slowly but oscillate maximum point on the maximum power point smally, when quantity insolation variation is small. To solve two problem of the power compare method, designed zero slope of differential value of maximum power.

  • PDF

New Method for MPPT Control of Photovoltaic System (태양광전시스템의 최대출력점추적제어를 위한 새로운 방식)

  • Chung, C.B.;Jho, J.H.;Jho, J.M.;Jeon, K.Y.;Lee, S.H.;Oh, B.H.;Kim, Y.J.;Han, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1256-1258
    • /
    • 2003
  • The solar cells should be operated at the maximum power point because its output characteristics are greatly fluctuate on the variations of insolation, temperature and loads. To obtain maximum power from solar cell, photovoltaic system cell power system usually requires maximum power point tracking controller. This paper propose Maximum power point tracking method using zero slope of differential value of maximum power. The power compare method traces to maximum power point rapidly but oscillate on the maximum power point largely, when quantity insolation variation is big. The power compare method is traces to maximum power point slowly but oscillate maximum point on the maximum power point smally, when quantity insolation variation is small. To solve two problem of the power compare method, designed zero slope of differential value of maximum power.

  • PDF

A Maximum Power Point Tracking Control for Photovoltaic Array without Voltage Sensor

  • Senjyu, Tomonobu;Shirasawa, Tomiyuki;Uezato, Katsumi
    • Journal of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.155-161
    • /
    • 2002
  • This paper presents a maximum power point tracking algorithm for Photovoltaic array using only instantaneous output current information. The conventional Hill climbing method of peak power tracking has a disadvantage of oscillations about the maximum power point. To overcome this problem, we have developed an algorithm that will estimate the duty ratio corresponding to maximum power operation of solar cell. The estimation of the optimal duty ratio involves, finding the duty ratio at which integral value of output current is maximum. For the estimation, we have used the well know Lagrange's interpolation method. This method can track maximum power point quickly even for changing solar isolation and avoids oscillations after reaching the maximum power point.

A Maximum Power Point Tracking Control for Photovoltaic Array without Voltage Sensor

  • Senjyu Tomonobu;Shirasawa Tomiyuki;Uezato Katsumi
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.617-621
    • /
    • 2001
  • This paper presents a maximum power point tracking algorithm for Photovoltaic array using only instantaneous output current information. The conventional Hill climbing method of peak power tracking has a disadvantage of oscillations about the maximum power point. To overcome this problem, we have developed a algorithm, that will estimate the duty ratio corresponding to maximum power operation of solar cell. The estimation of the optimal duty ratio involves, finding the duty ratio at which integral value of output current is maximum. For the estimation, we have used the well know Lagrange's interpolation method. This method can track maximum power point quickly even for changing solar insolations and avoids oscillations after reaching the maximum power point.

  • PDF

Maximum Power Analysis Simulator Development & Lighting Installation Control Simulation (최대전력 분석시뮬레이터 개발 및 조명설비 제어 시뮬레이션)

  • Chang, Hong-Soon;Han, Young-Sub;Soe, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.95-99
    • /
    • 2013
  • The maximum power analysis simulator took advantage of the facilities and power consumption reduction simulator test scenario development and testing of improvement in the scenario. As a maximum demand power controller, Maximum power analysis simulator performs control and disperasion of maximum demand power by calculating base power, load forecast, and present power which are based on signal of watt-hour meter to keep the electricity under the target. In addition, various algorithms to select appropriate control methode on each of the light installations through the peak demand power is configured to management. The simulation shows the success of control power for the specified target controlled by five sequential lighting installations.

Advanced Maximum Power Point Tracking Method for the Series Operation Strategy of Grid-Connected Small Wind Turbines (계통연계형 소형풍력발전 시스템의 직렬운전을 고려한 개선된 MPPT 방법)

  • Kim, Yong-Hyu;Heo, Hong-Jun;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.497-505
    • /
    • 2016
  • Operating wind turbine generators at maximum power point requires maximum power point tracking (MPPT) control methods. However, conventional methods cannot track the appropriate maximum power point in situations involving wind turbine systems based on a series operation strategy. These systems comprise one or more local maximum power points, and conventional methods can detect only one local maximum power point closed by a current operation point. This study proposes an advanced MPPT method for the series operation strategy of a small, grid-connected wind turbine system. In determining the appropriate maximum point, operations at certain local maximum power points are analyzed. The results show one appropriate point, which is tracked by the proposed MPPT method. The effectiveness of the proposed method is verified by the experimental results.

Improved Global Maximum Power Point Tracking Technique Using Output Characteristics of Solar Array (태양광 어레이의 출력 특성을 이용한 개선된 전역 최대전력 점 추종 기법)

  • Yoo, Koo-Hyun;Lee, Woo-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.2
    • /
    • pp.111-117
    • /
    • 2020
  • The photovoltaic module has the characteristic that the output power varies according to the amount of insolation. If partial shading occurs in an environment composed of an array, a number of local maximum power points (LMPPs) may be generated according to the shading state. Photovoltaic arrays require global maximum power point tracking due to variations in output characteristics caused by solar radiation and temperature. Conventional algorithms, such as P&O and Incond, do not follow the global maximum power point in a partial shaded solar array. In this study, we propose a technique to follow the global maximum power point by using the correlation of voltage, current, and power in solar arrays. The proposed control technique 2qw validated through simulation and experiments by constructing a 2-kW solar system.

Low Cost High Power Density Photovoltaic Power Conditioning System with an Energy Storage System

  • Jang, Du-Hee;Han, Sang-Kyoo
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.487-494
    • /
    • 2012
  • A new low cost high power density photovoltaic power conditioning system (PV PCS) with an energy storage system is proposed in this paper. Its high power density and cost effectiveness can be achieved through the unification of the maximum power point tracker and the battery charger/discharger. Despite the reduced power stage, the proposed system can achieve the same performance in terms of maximum power point tracking and battery charging/discharging as the conventional system. When a utility power failure happens, the proposed system cannot perform maximum power point tracking at the UPS mode. However, the predetermined battery voltage near the maximum power point of the PV array can effectively generate a reasonable PV power even at the UPS mode. Therefore, it features a simpler structure, less mass, lower cost, and fewer devices. Finally, to confirm the operation, validity, and features of the proposed system, a theoretical analysis and experimental results from a single phase AC 220Vrms/1.5kW prototype are presented.

A Modeling of CMOS Inverter for Maximum Power Dissipation Prediction (CMOS 인버터의 최대 전력소모 예측을 위한 모델링)

  • 정영권;김동욱
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1057-1060
    • /
    • 1998
  • Power Dissipation and circuit speed become the most importance parameters in VLSI system maximum power dissipation for VLSI system design. We remodeled CMOS inverter according to the operating region, saturation region or linear regin, and calculate maximum power dissipation point of CMOS inverter. The result of proposed maximum power dissipation model compared with those from SPICE simulation which results that the proposed maximum power dissipation model has the error rate within 10% to SPICE simulation.

  • PDF

Submodule Level Distributed Maximum Power Point Tracking PV Optimizer with an Integrated Architecture

  • Wang, Feng;Zhu, Tianhua;Zhuo, Fang;Yi, Hao;Shi, Shuhuai
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1308-1316
    • /
    • 2017
  • The distributed maximum power point tracking (DMPPT) concept is widely adopted in photovoltaic systems to avoid mismatch loss. However, the high cost and complexity of DMPPT hinder its further promotion in practice. Based on the concept of DMPPT, this paper presents an integrated submodule level half-bridge stack structure along with an optimal current point tracking (OCPT) control algorithm. In this full power processing integrated solution, the number of power switches and passive components is greatly reduced. On the other hand, only one current sensor and its related AD unit are needed to perform the ideal maximum power generation for all of the PV submodules in any irradiance case. The proposal can totally eliminate different small-scaled mismatch effects in real-word condition and the true maximum power point of each PV submodule can be achieved. As a result, the ideal maximum power output of the whole PV system can be achieved. Compared with current solutions, the proposal further develops the integration level of submodule DMPPT solutions with a lower cost and a smaller size. Moreover, the individual MPPT tracking for all of the submodules are guaranteed.