• Title/Summary/Keyword: Maximum oxygen consumption

Search Result 92, Processing Time 0.026 seconds

Critical Thermal Maximum (CTM) of Cultured Black Rockfish, Sebastes schlegeli

  • Kim Wan-Soo;Yoon Seong-Jin;Gil Joon-Woo
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.2
    • /
    • pp.59-65
    • /
    • 2003
  • The critical thermal maximum (CTM) of black rockfish, Sebastes schlegeli, was evaluated. Black rockfish were acclimated at $24^{\circ}C$, and then exposed to temperatures from 24 to $33^{\circ}C$. Black rockfish were kept in constant darkness and subjected to a gradual temperature increase $(1 ^{\circ}C\;12^{-1})$. The oxygen consumption rate (OCR) was measured using an automatic intermittent­flow-respirometer (AIFR) during the exposure period (from 119.3 to 143.5 h). The OCR increased from 94.5 to 214.2mL $O_2 kg^{-1}\;ww\;h^{-1}$ as the temperature rose from 24 to $29.4-30.9^{\circ}C$. Subsequently, the OCR increased abruptly, reaching 245.8-412.7mL $O_2 kg^{-1}\;ww\;h^{-1}$ at $32^{\circ}C$. This study suggests that the CTM for black rockfish is $29.4-30.9^{\circ}C$ when temperature is increased at $1^{\circ}C\;12h^{-1}$ following acclimation at $24^{\circ}C$.

The Optimum Salinity and the Effects of the Rapid Salinity Change on Oxygen Consumption and Nitrogen Excretion in River Puffer, Takifugu obscrus (급격한 염분변화에 따른 황복의 산소소비와 질소배설)

  • Lee Jeong-Yeol;Kim Deock-Bae
    • Journal of Aquaculture
    • /
    • v.18 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • The optimum salinity and the effects of rapid salinity change on oxygen consumption and ammonia nitrogen excretion were examined in River Puffer Takifugu obscrus (total length 9.5$\pm$0.9 cm, total weight 18.7$\pm$5.4 g). Fish examined at the different transfer medium salinity (2, 12, 22 and 32 psu) after 2 months of acclimation period at each salinities. The routine metabolic rates of River puffer are shown as parabola equation, $Y=-0.0873X^2+0.6384X-0.690$ for oxygen consumption and $Y=-2.1667X^2+7.1672X+31.999$ for ammonia nitrogen excretion with the salinity medium at 2, 12. 22 and 32 psu. The oxygen consumption and ammonia nitrogen excretion of River puffer trans-ferred to the low salinity medium (2 and 12 psu) showed significantly difference in each salinities rearing groups than to salinity of 22 and 32 psu. Fish has a diurnal rhythm in relate to feeding, it was showed that the peak of oxygen consumption appeared at 3 hours after feeding and the ammonia nitrogen excretion rate reached maximum 4 hours after feeding. These results may indicate that the optimum salinity for rearing of River puffer is 22 psu based on growth and feed conversion ratio. The rapid change of medium salinity had no effects on the oxygen consumption and nitrogen excretion in River puffer based on this experiment.

Oxygen Consumption and Blood Physiology of Olive Flounder Paralichthys olivaceus Subjected to Salinity Changes (염분 변화에 따른 넙치(Paralichthys olivaceus)의 산소 소비율과 혈액 성상)

  • Oh, Sung-Yong;Jeong, Yu Kyung;Lee, Geun Su;Kang, Pil Jun;Park, Hye Mi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.4
    • /
    • pp.620-627
    • /
    • 2020
  • Oxygen consumption and blood physiology of olive flounder Paralichthys olivaceus (mean body weight 106.6±6.8 g, mean±SD) was investigated at salinities of 34.0 (control), 33.7, 33.3, 32.6, 31.3, 28.6, 23.1, 12.2 and 0.0 psu at 20.0℃, respectively. Stepwise salinity changes (34.0→33.7→33.3→32.6→31.3→28.6→23.1→12.2→0.0 psu) with an interval of 24 h for each salinity induced a significant (P<0.05) increase of oxygen consumption rate (OCR) in fish exposed from 31.3 to 0.0 psu compared to that of control fish. The maximum OCR was found in fish exposed to 23.1 psu, which was accompanied by 36.2% higher energy consumption than the control fish. Fish exposed to each salinity for 24 h induced a significant decrease of blood plasma Na+ in 0.0 psu and Cl- in 12.2 and 0.0 psu (P<0.05), and increase of plasma glutamic oxaloacetic transaminase (GOT) in 0.0 psu compared to the control fish (P<0.05). The results of this experiment show that P. olivaceus exposed to concentrations below 31.3 psu requires more energy costs to adapt to salinity changes than 34.0 psu under our experimental conditions.

Effects of Water Temperature Changes on the Oxygen Consumption Rhythm in the Japanese eel, Anguilla japonica

  • Kim, Jong-Wook;Lee, Tae-Won;Noh, Il;Kim, Wan-Soo
    • Journal of Environmental Science International
    • /
    • v.20 no.8
    • /
    • pp.943-951
    • /
    • 2011
  • We investigated the effects of temperature changes on the oxygen consumption rhythm in Japanese eels, Anguilla japonica, using an automatic intermittent flow respirometer (AIFR). The endogenous rhythm of the oxygen consumption rate (OCR) in the eels (n = 18; 44-74 cm, 145-690 g), freshly collected by bag net from estuaries, was nearly synchronous with the tidal pattern of the estuarine collection site. The magnitude of mean OCR (mOCR) of eels showed variable range of 82.2 - 116.5 ml $O_2\;kg^{-1}ww \;h^{-1}$ under constant conditions. In case of increasing temperature from 25 to $38^{\circ}C$, the OCR of eels exhibited a gradually increasing trend with a rhythmic pattern until $36^{\circ}C$. Above $36^{\circ}C$ the rhythms of the OCR dampened and the OCR decreased rapidly at around $36-37^{\circ}C$. The OCR of the eels exhibited the maximum value at $38^{\circ}C$, and then it sharply decreased. The results suggested that the critical thermal maximum (CTM) regarding the endogenous rhythms of the eels was at around $36-37^{\circ}C$ when water temperature increased at $0.5^{\circ}C$/14 h following the acclimation at $25^{\circ}C$. In case of decreasing temperature ($0.5^{\circ}C$/14 h) from 25 to $0^{\circ}C$, the OCR of the eels displayed a abrupt decrease up to $23^{\circ}C$, and between at 23 and $20^{\circ}C$, there was an agitation which showed a slight increase in the OCR with a duration of 1-2 days. Below $9^{\circ}C$, the OCR rhythm of the eels showed a constant state regardless of temperature decreasing. These results suggest that the Japanese eel has an upper incipient lethal temperature at $36^{\circ}C$, with a lower thermal limit at $9^{\circ}C$. The biochemical aspects of the eels influenced by water temperature need to be further studied.

Psychophysical and Physiological Study on Various Lifting Tasks (여러 가지 들기 작업에서의 인체심리학적 · 생리학적 연구)

  • Yun, Hun-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.11-22
    • /
    • 2006
  • The muscular-skeletal disorders(MSDs) that have become a major issue recently in Korean industrial safety area are mainly caused by manual material handling task. The objective of this study is to provide scientific data for the establishment of work safety standard for Korean workers through the experiments of lifting task under various conditions, in order to prevent the muscular-skeletal disorders in the industrial work site. Eight male college students were recruited as participants. Three different lifting frequencies(1, 3, 5 lifts/min) and three twisting angles(including the sagittal plane and two asymmetric angles; i.e., 0°, 45°, 90°) for symmetric and asymmetric tasks, respectively, with three lifting range from floor to knuckle height, knuckle to shoulder, floor to shoulder height for one hour's work shift using free style lifting technique were studied. The maximum acceptable weight of load(MAWL) was determined under the different task conditions, and the oxygen consumption, heart rate, and RPE were measured or recorded while subjects were lifting their MAWLs. The results showed that: (1) The MAWLs were significantly decreased as the task frequency and task angle increased.; (2) The heart rate, oxygen consumption, RPE significantly increased with an increase in lifting frequency although maximum acceptable weight of lift decreased.; (3) The highest heart rate and oxygen consumption was recorded at the lifting range of floor to shoulder, followed by floor to knuckle and knuckle to shoulder.; (4) The RPE value showed that subjects perceived more exertion at the high frequency rate of lifting task and lifting range of floor to shoulder height. (5) The modeling for MAWL using isometric strength, task angle and lifting frequency were developed. It is expected that use of the results provided in this study may prove helpful in reducing MMH hazards, especially from lifting tasks for Korean, and can be used as a basis for pre-employment screening.

The Combustion Characteristics of Tree Branches, Barks, Living Leaves and Dead Leaves in Pinus Densiflora and Quercus Dentata (소나무와 떡갈나무의 주요 부위별 연소특성에 관한 연구)

  • Park, Young-Ju;Lee, Si-Young;Sin, Young-Ju;Kim, Su-Young;Kim, Young-Tak;Lee, Hae-Pyeong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.303-307
    • /
    • 2008
  • In this study, we have carried out the cone calorimeter test to examine the thermal characteristics, such as total smoke production(TSP), smoke temperature and oxygen consumption, of significant parts of above trees which are representative species of Young Dong Province of Korea. The smoke production of dead leaves and living leaves of pinus densiflora was increased rapidly at the early period of combustion. So the total smoke production of this parts was 8.3 times higher than other parts. The TSP of branches and barks of quercus dentata was 14.4 and 7.2 times higher than of pinus densiflora respectively. And also the maximum smoke temperature was about $338.35{\sim}353.25\;K$. The significant difference of oxygen consumption was not detected for dead leaves, branches and barks. However, the oxygen consumption of living leaves which have high percentage of moisture content is the lowest.

  • PDF

Microbial Activity of Gravel Intertidal Zone for Purification of Polluted Near Shore Water

  • Song, Young-Chae;Gu, Ja-Hwan;Park, In-Seok;Yoo, Jong-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.233-239
    • /
    • 2004
  • Microbial activity of biofilm formed on the surface of gravels from intertidal zone was estimated using an aerobic respirometer system, and compared with that of suspended marine microorganisms contained in a near shore water. The maximum oxygen uptake rate of the suspended marine microorganisms was 0.15mg O$_2$/L/hr, indicating the potential of purification of polluted near shore water. For the gravels from the intertidal zone, the maximum uptake rate of oxygen was affected by the vertical positions, but their gross value was 0.77mg O$_2$/L/hr, which was around 5.1 times higher than the purification potential of polluted near shore water by the microorganisms contained in the near shore water. The nitrogen removed by the gravels from the intertidal zone and the marine microorganisms was about 1/20-1/39 times of the total consumption of oxygen, which was similar to that of the phosphate. The gravel intertidal zone contained lots of particulate organics, over than that in the near shore water, and this was confirmed from the large difference between total oxygen consumption and the removed soluble COD in the microbial activity test. This indicates that the gravel intertidal zone plays an important role in controlling the non-point source pollutants from land, as well as self-purification of polluted near shore water by trapping and degrading the particulate organics.

  • PDF

Microbial Activity of Gravel Intertidal Zone for Purification of Polluted Near Shore Water

  • Song, Young-Chae;Gu, Ja-Hwan;Park, In-Seok;Yoo, Jong-Su
    • Journal of Navigation and Port Research
    • /
    • v.28 no.2
    • /
    • pp.155-159
    • /
    • 2004
  • Microbial activity of biofilm formed on the surface of gravels from intertidal zone was estimated using an aerobic respirometer system, and compared with that of suspended marine microorganisms contained in a near shore water, The maximum oxygen uptake rate of the suspended marine microorganisms was 0.15mg$O_2$/L/hr, indicating the potential of purification of polluted near shore water. For the gravels from the intertidal zone, the maximum uptake rate of oxygen was affected by the vertical positions, but their gross value was 0.77mg $O_2$/L/hr, which was around 5.1 times higher than the purification potential of polluted near shore water by the microorganisms contained in the near shore water. The nitrogen removed by the gravels from the intertidal zone and the marine microorganisms was about 1/20-1/39 times of the total consumption of oxygen, which was similar to that of the phosphate. The gravel intertidal zone contained lots of particulate organics, over than that in the near shore water, and this was confirmed from the large difference between total oxygen consumption and the removed soluble COD in the microbial activity test. This indicates that the gravel intertidal zone plays an important role in controlling the non-point source pollutants from land, as well as self-purification of polluted near shore water by trapping and degrading the particulate organics.

Impact of Current Density, Operating Time and pH of Textile Wastewater Treatment by Electrocoagulation Process

  • Hossain, Md. Milon;Mahmud, Md. Iqbal;Parvez, Md. Shohan;Cho, Haeng Muk
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.157-161
    • /
    • 2013
  • Treatment of textile wastewater by the electrocoagulation (EC) process is being investigated by this experimental study. The objective of this experiment is to observe the efficiency of the EC process in removing chemical oxygen demand (COD) and turbidity. In this experiment an iron electrode is used in the EC process, and different working parameters such as pH, current density and operating time were studied in an attempt to achieve a higher removal capacity. The results show that the maximum COD removal occurred at neutral pH at operating time 30 min. COD and turbidity removal reaches at maximum, with optimum consumption of electrodes, between current density 85-95 $A/m^2$, and only trace amounts of metals were determined in the EC treated effluent.

Gas Generation by Burning Test of Cypress Specimens Treated with Boron Compounds (붕소 화합물로 처리된 편백목재 시험편의 연소시험에 의한 가스 발생)

  • Jin, Eui;Chung, Yeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.413-418
    • /
    • 2018
  • Cypress woods treated individually with boric acid (BA4), ammonium pentaborate (APB4), or BA4/APB4 additives were examined for combustion gases. Each of the specimens was painted with a 4 wt% solution of boron compounds three times. Dried at room temperature, the combustion gas was analyzed using a cone calorimeter (ISO 5660-1). Consequently, the second maximum oxygen consumption rate of the specimen treated with boron compounds was 0.1067 to 0.1246 g/s, which was 5.3 to 18.9%, respectively lower than that of the blank specimen. The specific extinction area of specimens treated with BA4 and APB4 was also 2.0 to 19.0% lower, respectively. However, treated with BA4/APB4 showed 21.2% higher than that of the blank specimen. The maximum carbon monoxide concentration of the specimens with boron compounds was reduced by 0 to 25%. It was estimated to be 1.6 to 2.2 times higher than the permissible exposure limits by Occupational Safety and Health Administration (OSHA), indicating a fatal toxicity. The boron compounds were effective in reducing carbon monoxide, but didn't meet the OSHA limit. The boron compound inhibited the burning behavior of the cypress wood, which suppressed the second maximum oxygen consumption rate by 5.3 to 18.9% and the maximum carbon monoxide generation by 0 to 25%.