Browse > Article
http://dx.doi.org/10.5657/KFAS.2020.0620

Oxygen Consumption and Blood Physiology of Olive Flounder Paralichthys olivaceus Subjected to Salinity Changes  

Oh, Sung-Yong (Marine Bio-Resources Research Unit, Korea Institute of Ocean Science & Technology)
Jeong, Yu Kyung (Marine Bio-Resources Research Unit, Korea Institute of Ocean Science & Technology)
Lee, Geun Su (Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology)
Kang, Pil Jun (Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology)
Park, Hye Mi (Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.53, no.4, 2020 , pp. 620-627 More about this Journal
Abstract
Oxygen consumption and blood physiology of olive flounder Paralichthys olivaceus (mean body weight 106.6±6.8 g, mean±SD) was investigated at salinities of 34.0 (control), 33.7, 33.3, 32.6, 31.3, 28.6, 23.1, 12.2 and 0.0 psu at 20.0℃, respectively. Stepwise salinity changes (34.0→33.7→33.3→32.6→31.3→28.6→23.1→12.2→0.0 psu) with an interval of 24 h for each salinity induced a significant (P<0.05) increase of oxygen consumption rate (OCR) in fish exposed from 31.3 to 0.0 psu compared to that of control fish. The maximum OCR was found in fish exposed to 23.1 psu, which was accompanied by 36.2% higher energy consumption than the control fish. Fish exposed to each salinity for 24 h induced a significant decrease of blood plasma Na+ in 0.0 psu and Cl- in 12.2 and 0.0 psu (P<0.05), and increase of plasma glutamic oxaloacetic transaminase (GOT) in 0.0 psu compared to the control fish (P<0.05). The results of this experiment show that P. olivaceus exposed to concentrations below 31.3 psu requires more energy costs to adapt to salinity changes than 34.0 psu under our experimental conditions.
Keywords
Olive flounder; Salinity; Oxygen consumption; Blood physiology; Energy loss;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Lemos D, Phan VN and Alvarez G. 2001. Growth, oxygen consumption, ammonia-N excretion, biochemical composition and energy content of Farfantepenaeus paulensis Perez-Farfante (Crustacea, Decapoda, Penaeidae) early postlarvae in different salinities. J Exp Mar Biol Ecol 261, 55-74. https://doi.org/10.1016/S0022-0981(01)00260-X.   DOI
2 Marshall WS. 2002. $Na^+$, $Cl^{-}$, $Ca^{2+}$ and $Zn^{2+}$ transport by fish gills: retrospective review and prospective synthesis. J Exp Zool 293, 264-283. https://doi.org/10.1002/jez.10127.   DOI
3 McCormick SD. 2001. Endocrine control of osmoregulation in fish. Am Zool 41, 781-794. https://doi.org/10.1093/icb/41.4.781.   DOI
4 Morgan JD and Iwama GK. 1999. Energy cost of NaCl transport in isolated gills of cutthroat trout. Am J Physiol-Reg I 277, R631-R639. https://doi.org/10.1152/ajpregu.1999.277.3.R631.
5 Oh SY, Kim CK, Jang YS, Choi HJ and Myoung JG. 2014. Effect of salinity on survival, oxygen consumption and blood physiology of Korean Rockfish Sebastes schlegelii. Ocean Polar Res 36, 135-143. http://doi.org/10.4217/OPR.2014.36.2.135.   DOI
6 Oh SY, Jang YS, Park HS, Choi YU and Kim CH. 2012. The influence of water temperature and body weight on metabolic rate of olive flounder Paralichthys olivaceus. Ocean Pol Res 34, 93-99. http://doi.org/10.4217/OPR.2012.34.1.093.   DOI
7 Oh SY, Myoung JG and Park JW. 2015. Effects of salinity on survival, oxygen consumption, and hematological response of greenling Hexagrammos otakii. Korean J Fish Aquat Sci 48, 712-718. https://doi.org/10.5657/KFAS.2015.0712.   DOI
8 Oh SY, Shin CH, Jo JY, Noh CH, Myoung JG and Kim JM. 2006. Effects of water temperature and salinity on the oxygen consumption rate of juvenile spotted sea bass, Lateolabrax maculatus. Korean J Ichthyol 18, 202-208.
9 Peres-Pinzo MA and Lutz PL. 1991. Activity related cost of osmoregulation in the juvenile smook (Centropomus undecimalis). Bull Mar Sci 48, 58-66.
10 Perez-Robles J, Re AD, Giffard-Mena I and Diaz F. 2012. Interactive effects of salinity on oxygen consumption, ammonium excretion, osmoregulation and $Na^{+}/K^{+}$-ATPase expression in the bullseye puffer (Sphoeroides annulatus, Jenyns 1842). Aquac Res 43, 1372-1383. https://doi.org/10.1111/j.1365-2109.2011.02940.x.   DOI
11 Plaut I. 1999. Effects of salinity acclimation on oxygen consumption in the freshwater blenny, Salaria fluviatilis, and the marine peacock blenny, S. pavo. Mar Fresh Res 50, 655-659. https://doi.org/10.1071/MF98130.   DOI
12 Romo ZM, Re AD, Diaz F and Mena A. 2010. Physiological responses of pink abalone Haliotis corrugata (Gray, 1828) exposed to different combinations of temperature and salinity. Aquac Res 41, 953-960. https://doi.org/10.1111/j.1365-2109.2009.02377.x.   DOI
13 Salvato B, Cuomo V, Muro RD, Beltramini M. 2001. Effects of environmental parameters on the oxygen consumption of four marine invertebrates: a comparative factorial study. Mar Biol 138, 659-668. https://doi.org/10.1007/s002270000501.   DOI
14 Schreck CB. 1982. Stress and rearing of salmonids. Aquaculture 28, 241-249. https://doi.org/10.1016/0044-8486(82)90026-6.   DOI
15 Schutt DA, Lehmann J, Goerlich R and Hamers R. 1997. Haematology of swordtail Xiphophorous helleri. I: blood parameters and light microscopy of blood cells. J Appl Ichthy 13, 83-89. https://doi.org/10.1111/j.1439-0426.1997.tb00106.x.   DOI
16 Uliano E, Cataldi M, Carella F, Migliaccio O, Iaccarino D and Agnisola C. 2010. Effects of acute changes in salinity and temperature on routine metabolism and nitrogen excretion in gambusia Gambusia affinis and zebrafish Danio rerio. Comp Biochem Physiol A 157, 283-290. https://doi.org/10.1016/j.cbpa.2010.07.019.   DOI
17 Altinok I and Grizzle JM. 2003. Effect of low salinities on oxygen consumption of selected euryhaline and stenohaline freshwater fish. J World Aquac Soc 34, 113-117. https://doi.org/10.1111/j.1749-7345.2003.tb00046.x.   DOI
18 Arnason T, Magnadottir B, Bjornsson B, Steinarsson A and Bjornsson BT. 2013. Effects of salinity and temperature on growth, plasma ions, cortisol and immune parameters of juvenile Atlantic cod Gadus morhua. Aquaculture 380-383, 70-79. https://doi.org/10.1016/j.aquaculture.2012.11.036.   DOI
19 Boeuf G and Payan P. 2001. How should salinity influence fish growth?. Comp Biochem Physiol C 130, 411-423. https://doi.org/10.1016/S1532-0456(01)00268-X.
20 Tang CH and Lee TH. 2007. The effect of environmental salinity on the protein expression of $Na^{+}/K^{+}$-ATPase, $Na^{+}/K^{+}/2Cl^{-}$ cotransporter, cystic fibrosis transmembrane conductance regulator, anion, exchanger 1, and chloride channel 3 in gills of a euryhaline teleost, Tetraodon nigroviridis. Comp Biochem Physiol A 147, 521-528. https://doi.org/10.1016/j.cbpa.2007.01.679.   DOI
21 Wedemeyer GA. 1996. Physiology of fish in intensive culture systems. Chapman Hall, New York, NY, U.S.A., 232.
22 Evans DH, Piermarini PM and Choe KP. 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85, 97-177. https://doi.org/10.1152/physrev.00050.2003.   DOI
23 Brougher DS, Douglass LW and Soares JH. 2005. Comparative oxygen consumption and metabolism of striped bass Morone saxatilis and its hybrid M. chrysops female$\times$M. saxatilis male. J World Aquac Soc 36, 521-529. https://doi.org/10.1111/j.1749-7345.2005.tb00400.x.   DOI
24 Chun JH and Rho S. 1991. Salinity tolerance of eggs and juveniles of flounder Paralichthys olivaceus (Temminck et schlegel). J Aquaculture 4, 73-84.
25 Dalla Via J, Villani P, Gasteiger E and Niederstatter H. 1998. Oxygen consumption in sea bass fingerling Dicentrachus labrax exposed to acute salinity and temperature changes: metabolic basis for maximum stocking density estimations. Aquaculture 169, 303-313. https://doi.org/10.1016/S0044-8486(98)00375-5.   DOI
26 Elliot JM and Davison W. 1975. Energy equivalents of oxygen consumption in animal energetics. Oecologia 19, 195-201. https://doi.org/10.1007/BF00345305.   DOI
27 Ern R, Huong DTT, Cong NV, Bayley M and Wang T. 2014. Effect of salinity on oxygen consumption in fishes: a review. J Fish Biol 84, 1210-1220. https://doi.org/10.1111/jfb.12330.   DOI
28 Gaumet F, Boeuf G, Severe A, Leroux A and Mayergonstan N. 1995. Effects of salinity on the ionic balance and growth of juvenile turbot. J Fish Biol 47, 865-876. https://doi.org/10.1111/j.1095-8649.1995.tb06008.x.   DOI
29 Gracia-Lopez V, Rosas-Vazquez C and Brito-Perez R. 2006. Effects of salinity on physiological conditions in juvenile common snook Centropomus undecimalis. Comp Biochem Physiol A 145, 340-345. https://doi.org/10.1016/j.cbpa.2006.07.008.   DOI
30 Gregory TR and Wood CM. 1999. The effects of chronic plasma cortisol elevation on the feeding behaviour, growth, competitive ability, and swimming performance of juvenile rainbow trout. Physiol Biochem Zool 72, 286-295. https://doi.org/10.1086/316673.   DOI
31 Harris J and Bird DJ. 2000. Modulation of the fish immune system by hormones. Vet Immunol Immunop 77, 163-176. https://doi.org/10.1016/S0165-2427(00)00235-X.   DOI
32 Hur JW, Chang YJ, Lee BK and Lee JY. 2003. Effects of hyposalinity on physiological response, survival and growth of cultured olive flounder Paralichthys olivaceus. Korean J Ichthyol 15, 77-86.
33 Hur JW, Lee JY, Kim YH, Park IS and Chang YJ. 2006. Effects of salinity on hematological changes and survival of cultured olive flounder, Paralichthys olivaceus. Korean J Environ Biol 24, 380-386.
34 Kang JC, Jee JH, Kim SG, Park GS and Park SY. 2004. Tolerance of juvenile gobiidae Tridentiger trigonocephalus exposed to various salinity. Korean J Environ Biol 22, 153-158.
35 Hur JW, Lee BK, Chang YJ, Lee JK, Lim YS, Lee JH, Park CH and Kim BK. 2002. Stress responses of olive flounder Paralichthys olivaceus to hyposalinity. J Aquaculture 15, 69-75.
36 Hur JW, Lee BK, Min BH, Park IS, Choi CY, Lee JY and Chang YJ. 2004. Physiological responses of olive flounder Paralichthys olivaceus by capacity density difference during salinity change from seawater to freshwater. Korean J Enviro Biol 14, 419-425.
37 Imsland AK, Gustavsson A, Gunnarsson S, Foss A, Arnason J, Arnarson I, Jonsson AF, Smaradottir H and Thorarensen H. 2008. Effects of reduced salinities on growth, feed conversion efficiency and blood physiology of juvenile Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 274, 254-259. https://doi.org/10.1016/j.aquaculture.2007.11.021.   DOI
38 Jobling M. 1982. A study of some factors affecting rates of oxygen consumption of plaice, Pleuronectes platessa L. J Fish Biol 20, 501-516. https://doi.org/10.1111/j.1095-8649.1982.tb03951.x.   DOI
39 Kang JC, Chin P, Lee JS, Shin YK and Cho KS. 2000. Effects of salinity on survival, growth and oxygen consumption rates of the juvenile gobiid Favonigobius gymnauchen. J Korean Fish Soc 33, 408-412.
40 Karnaky KJ Jr. 1998. Osmotic and ionic regulation. In: Evans, D.H. (Ed.), The Physiology of Fishes, second ed. CRC Press, Boca Raton, FL, U.S.A., 157-176.
41 Kidder GW, Petersen CW and Preston RL. 2006a. Energetics of osmoregulation: I. Oxygen consumption by Fundulus heteroclitus. J Exp Zool A 305, 309-317. https://doi.org/10.1002/jez.a.251.
42 Kidder GW, Petersen CW and Preston RL. 2006b. Energetics of osmoregulation: II. Water flux and osmoregulatory work in the euryhaline fish, Fundulus heteroclitus. J Exp Zool A 305, 318-327. https://doi.org/10.1002/jez.a.252.
43 Lee JY and Kim DB. 2005. The optimum salinity and the effects of the rapid salinity change on oxygen consumption and nitrogen excretion in river puffer, Takifugu obscrus. J Aquaculture 18, 45-51.
44 Kim MJ, Chung SC and Song CB. 2004. Effect of salinity on growth and survival of olive flounder Paralichthys olivaceus. Korean J Ichthyol 16, 100-106.