DOI QR코드

DOI QR Code

Effects of Water Temperature Changes on the Oxygen Consumption Rhythm in the Japanese eel, Anguilla japonica

  • Kim, Jong-Wook (Marine Ecosystem & Conservation Research Division, Korea Ocean Research & Development Institute) ;
  • Lee, Tae-Won (Department of Oceanography, Chungnam National University) ;
  • Noh, Il (Division of Marine Environment & Bioscience, Korea Maritime University) ;
  • Kim, Wan-Soo (Marine Ecosystem & Conservation Research Division, Korea Ocean Research & Development Institute)
  • Received : 2011.05.26
  • Accepted : 2011.08.30
  • Published : 2011.08.31

Abstract

We investigated the effects of temperature changes on the oxygen consumption rhythm in Japanese eels, Anguilla japonica, using an automatic intermittent flow respirometer (AIFR). The endogenous rhythm of the oxygen consumption rate (OCR) in the eels (n = 18; 44-74 cm, 145-690 g), freshly collected by bag net from estuaries, was nearly synchronous with the tidal pattern of the estuarine collection site. The magnitude of mean OCR (mOCR) of eels showed variable range of 82.2 - 116.5 ml $O_2\;kg^{-1}ww \;h^{-1}$ under constant conditions. In case of increasing temperature from 25 to $38^{\circ}C$, the OCR of eels exhibited a gradually increasing trend with a rhythmic pattern until $36^{\circ}C$. Above $36^{\circ}C$ the rhythms of the OCR dampened and the OCR decreased rapidly at around $36-37^{\circ}C$. The OCR of the eels exhibited the maximum value at $38^{\circ}C$, and then it sharply decreased. The results suggested that the critical thermal maximum (CTM) regarding the endogenous rhythms of the eels was at around $36-37^{\circ}C$ when water temperature increased at $0.5^{\circ}C$/14 h following the acclimation at $25^{\circ}C$. In case of decreasing temperature ($0.5^{\circ}C$/14 h) from 25 to $0^{\circ}C$, the OCR of the eels displayed a abrupt decrease up to $23^{\circ}C$, and between at 23 and $20^{\circ}C$, there was an agitation which showed a slight increase in the OCR with a duration of 1-2 days. Below $9^{\circ}C$, the OCR rhythm of the eels showed a constant state regardless of temperature decreasing. These results suggest that the Japanese eel has an upper incipient lethal temperature at $36^{\circ}C$, with a lower thermal limit at $9^{\circ}C$. The biochemical aspects of the eels influenced by water temperature need to be further studied.

Keywords

References

  1. Barrionuevo, W. R., Fernandes, M. N., 1995, Critical thermal maxima and minima for curimbata, Prochilodus scrofa Steindachner, of two different sizes, Aquacult. Res., 26, 447-450. https://doi.org/10.1111/j.1365-2109.1995.tb00934.x
  2. Brett, J. R., 1971, Energetic response of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon O. nerka, Am. Zool., 11, 99-113. https://doi.org/10.1093/icb/11.1.99
  3. Burnet, A. M. R., 1969, Migrating eels in a Canterburry River, New Zealand, N. Z. J. Mar. Freshw. Res., 3, 230-244. https://doi.org/10.1080/00288330.1969.9515292
  4. Burrows, M. T., Gibson, R. N., MacLean, A., 1994, Effects of endogenous rhythms and light conditions on foraging and predator-avoidance in juvenile plaice, J. Fish. Biol., 45, 171-180. https://doi.org/10.1111/j.1095-8649.1994.tb01091.x
  5. Cairns, D., 1941, Life-history of the two species of New Zealand fresh-water eel. Part I. Taxonomy, age and growth, migration, and distribution, N. Z. J. Sci. Technol., B23, 53b-72b.
  6. Dowse, H. B., Ringo, J. M., 1989, The search for hidden periodicities in biological time series revisited, J. Theor. Biol., 139, 487-515. https://doi.org/10.1016/S0022-5193(89)80067-0
  7. Gandolfi, G., Pesaro, M., Tongiori, P., 1984, Environmental factors affecting the ascent of elvers, Anguilla anguilla (L.), into the Arno river, Oebalia, 10, 17-35.
  8. Gibson, R. N., 1992, Tidally synchronized behaviour in marine fishes, in: Ali, M. A. (ed.), Rhythms in fishes, Plenum Press, New York, 63-98.
  9. Haro, A. J., 1991, Thermal preference and behavior of Atlantic eels (genus Anguilla) in relation to their spawning migration, Environ. Biol. Fish., 31, 171-184. https://doi.org/10.1007/BF00001018
  10. Hividstein, N. A., 1985, Yield of silver eel and factors effecting downstream migration in the stream Imsa, Norway, Rep. Inst. Freshw. Res., 62, 75-85.
  11. Jobling, M., 1988, A review of the physiological and nutritional energetics of cod, Gadus morhua L., with particular reference to growth under farmed conditions, Aquaculture, 70, 1-19. https://doi.org/10.1016/0044-8486(88)90002-6
  12. Kadri, S., Metcalfe, N. B., Huntingford, F. A., Thorpe, J. E., 1997a, Daily feeding rhythms in Atlantic salmon I: feeding and aggression in part under ambient environmental conditions, J. Fish. Biol., 50, 267-272.
  13. Kadri, S., Metcalfe, N. B., Huntingford, F. A., Thorpe, J. E., 1997b, Daily feeding rhythms in Atlantic salmon II: size-related variation in feeding patterns of post-smolts under constant environmental conditions, J. Fish. Biol., 50, 273-279. https://doi.org/10.1111/j.1095-8649.1997.tb01358.x
  14. Kamra, S. K., 1966, Effects of starvation and refeeding on some liver and blood constituents of Atlantic cod (Gadus morhua L.), J. Fish. Res. Board. Can., 23, 1495-1505. https://doi.org/10.1139/f66-140
  15. Kim, W. S., Jeon, J. K., Lee, S. H., Huh, H. T., 1996, Effects of pentachlorophenol (PCP) on the oxygen consumption rate of the river puffer fish, Takifu obscurus, Mar. Ecol. Prog. Ser., 143, 9-14. https://doi.org/10.3354/meps143009
  16. Kim, W. S, Yoon, S. J., Moon, H. T., Lee, T. W., 2002a, Effects of water temperature changes on the endogenous and exogenous rhythms of oxygen consumption in glass eels Anguilla japonica, Mar. Ecol. Prog. Ser., 243, 209-216. https://doi.org/10.3354/meps243209
  17. Kim, W. S., Yoon, S. J., Kim, Y., Kim, S. Y., 2002b, Endogenous rhythm in oxygen consumption by the Pacific oyster Crassostrea gigas (Thunberg), J. Fish. Sci. Tech., 5, 191-199. https://doi.org/10.5657/fas.2002.5.3.191
  18. Kim, W. S., Yoon, S. J., Gil, J. W., 2003, Critical Thermal Maximum (CTM) of cultured black rockfish, Sebastes schlegeli, J. Fish. Soc., 6, 59-65. https://doi.org/10.5657/fas.2003.6.2.059
  19. Lam, T. J., 1982, Application of endocrinology to fish culture, Can. J. Fish. Aquat. Sci., 39, 111-137. https://doi.org/10.1139/f82-013
  20. Larsson, A., Lewander, K., 1973, Metabolic effects of starvation in the eel, Anguilla anguilla L., Comp. Biochem. Physiol., 44A, 367-374.
  21. Mehner, T., Wieser W., 1994, Energetics and metabolic correlates of starvation in juvenile perch (Perca fluviatilis), J. Fish. Biol., 45, 325-333. https://doi.org/10.1111/j.1095-8649.1994.tb01311.x
  22. Menasveta, P., 1981, Lethal temperature of marine fishes of the Gulf of Thailand, J. Fish. Biol., 18, 603-607. https://doi.org/10.1111/j.1095-8649.1981.tb03800.x
  23. Morgan, M. J., 1992, Low temperature tolerance of American plaice in relation to declines in abundance, Trans. Am. Fish. Soc., 121, 399-402. https://doi.org/10.1577/1548-8659(1992)121<0399:LTOAPI>2.3.CO;2
  24. Northcott, S. J., Gibson, R. N., Morgan, E., 1991a, The effect of tidal cycles of hydrostatic pressure on the activity of Lipophrys pholis (L.) (Teleostei), J. Exp. Mar. Biol. Ecol., 148, 35-45. https://doi.org/10.1016/0022-0981(91)90145-M
  25. Okamura, A., Yamada, Y., Tanaka, S., Horie, N., Utoh, T., Mikawa, N., Akazawa, A., Oka, H. P., 2002, Atmospheric depression as the final trigger for the seaward migration of Japanese eel Anguilla japonica, Mar. Ecol. Prog. Ser., 234, 281-288. https://doi.org/10.3354/meps234281
  26. Pursiainen, M., Tulonen, J., 1986, Eel escapement from small forest lakes, Vie Milieu, 36, 287-290.
  27. Reynolds, W. W., Casterlin, M. E., 1980, The role of temperature in the environmental physiology of fishes, in: Ali M. A. (ed.), Plenum Press, New York, 497-518.
  28. Tanaka, H., 1998, Production of eel fry, Farming Jpn., 32, 22-27.
  29. Tesch, F. W., Westerberg, H., Karlsson, L., 1991, Tracking studies on migrating silver eels in the Central Baltic, Meeresforschung, 33, 183-196.
  30. Tesch, F. W., 2003, The Eel, 3rd ed., Blackwell Science Ltd, Iowa, 296.
  31. Thetmeyer, H., 1997, Diel rhythms of swimming activity and oxygen consumption in Gobiusculus flavescens (Fabricius) and Pomatoschistus minutus (Pallas) (Teleostei:Gobiidae), J. Exp. Mar. Biol. Ecol., 218, 187-198. https://doi.org/10.1016/S0022-0981(97)00073-7
  32. Todd, P. R., 1981, Timing and periodicity of migrating New Zealand freshwater eels (Anguilla spp.), N. Z. J. Mar. Freshw. Res., 15, 225-235. https://doi.org/10.1080/00288330.1981.9515915
  33. Tongiorgi, P., Tosi, L., Balsamo, M., 1986, Thermal preferences in upstream migration glass eels of Anguilla anguilla (L.), J. Fish. Biol., 28, 501-510. https://doi.org/10.1111/j.1095-8649.1986.tb05186.x
  34. Vollestad, L. A., Jonsson, B., Hvidsten, N. A., Naesje, T. F., Haraldstad, O., Ruud-Hansen, J., 1986, Environmental factors regulating the seaward migration of European silver eel (Anguilla anguilla), Can. J. Fish. Aquat. Sci., 43, 1909-1916. https://doi.org/10.1139/f86-236
  35. Westin, L., Nyman, L., 1979, Activities, orientation and migration of Baltic eel (Anguilla anguilla L.), Rapp. P-V. Reun. Cons. Int. Explor. Mer., 174, 115-123.
  36. White, M. E., Knights, B., 1997, Environmental factors affecting migration of the European eel in the Rivers Severn and Avon, England, J. Fish. Biol., 50, 1104-1116. https://doi.org/10.1111/j.1095-8649.1997.tb01634.x
  37. Wippelhauser, G. S., McCleave, J. D., 1988, Rhythmic activity of migrating juvenile American eels Anguilla rostrata, J. Mar. Biol. UK., 68, 81-91. https://doi.org/10.1017/S0025315400050116
  38. Woiwode, J. G., Adelman, I. R., 1992, Effects of starvation, oscillating temperature, and photoperiod on the critical thermal maximum of hybrid stripped x white bass, J. Thermal. Biol., 17, 271-275. https://doi.org/10.1016/0306-4565(92)90066-O
  39. Yamamoto, K., Yamauchi, K., 1974, Sexual maturation of Japanese eel and production of eel larvae in the aquarium, Nature, 251, 220-222. https://doi.org/10.1038/251220a0