• Title/Summary/Keyword: Maximum oscillation frequency

Search Result 148, Processing Time 0.027 seconds

A G-Band Frequency Doubler Using a Commercial 150 nm GaAs pHEMT Technology

  • Lee, Iljin;Kim, Junghyun;Jeon, Sanggeun
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.147-152
    • /
    • 2017
  • This paper presents a frequency doubler operating at G-band that exceeds the maximum oscillation frequency ($f_{max}$) of the given transistor technology. A common-source transistor is biased on class-B to obtain sufficient output power at the second harmonic frequency. The input and output impedances are matched to achieve high output power and high return loss. The frequency doubler is fabricated in a commercial 150-nm GaAs pHEMT process and obtains a measured conversion gain of -5.5 dB and a saturated output power of -7.5 dBm at 184 GHz.

A Study on the Performance Improvement of GaAs Metamorphic HEMTs Using ICPCVD SiNx Passivation (ICPCVD 질화막 Passivation을 이용한 GaAs Metamorphic HEMT 소자의 성능개선에 관한 연구)

  • Kim, Dong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.483-490
    • /
    • 2009
  • In this paper, a novel low-damage silicon nitride passivation for 100nm InAlAs/InGaAs MHEMTs has been developed using remote ICPCVD. The silicon nitride deposited by ICPCVD showed higher quality, higher density, and lower hydrogen concentration than those of silicon nitride deposited by PECVD. In particular, we successfully minimized the plasma damage by separating the silicon nitride deposition region remotely from ICP generation region, typically with distance of 34cm. The silicon nitride passivation with remote ICPCVD has been successfully demonstrated on GaAs MHEMTs with minimized damage. The passivated devices showed considerable improvement in DC characteristics and also exhibited excellent RF characteristics($f_T$of 200GHz).The devices with remote ICPCVD passivation of 50nm silicon nitride exhibited 22% improvement(535mS/mm to 654mS/mm) of a maximum extrinsic transconductance($g_{m.max}$) and 20% improvement(551mA/mm to 662mA/mm) of a maximum saturation drain current ($I_{DS.max}$) compared to those of unpassivated ones, respectively. The results achieved in this work demonstrate that remote ICPCVD is a suitable candidate for the next-generation MHEMT passivation technique.

K-band MMIC Oscillator Design Using the PHEMT (PHEMT소자를 이용한 K-band MMIC 발진 설계)

  • 이지형;채연식;조희철;윤용순;이진구
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.88-91
    • /
    • 2000
  • An MMIC oscillator operating at the 24.55 GHz has been designed using 0.2 ${\mu}{\textrm}{m}$AlGaAs/InGaAs/GaAs Pseudomorphic HEMT technology. The active device used in the oscillator design has a 0.2 ${\mu}{\textrm}{m}$ gate length PHEMT with 4$\times$80 ${\mu}{\textrm}{m}$ gate width. We obtained 4.08 dB of S$_{21}$ gain and 317 mS/mm of transconductance, and extrapolated unit current gain cut-off frequency (f$_{T}$) and maximum oscillation frequency (fmax) were 62 GHz and 120 GHz, respectively. The circuit are based on a series feedback and negative resistance topology. Microstrip line open stub is used to terminating. The oscillator circuits has designed for delivering maximum power to load and conjugated matching. The simulated small signal negative resistance was 50 Ω. We obtained 1.002 of loop gain and 0.0005$^{\circ}$angle from the simulation by HP libra 6.1. The layout for oscillator is 1.2$\times$1.8 $\textrm{mm}^2$.>.

  • PDF

A fabrication and characterization of asymmetric 0.1 ${\mu}{\textrm}{m}$ $\Gamma$-gate PHEMT device using electron beam lithography (전자선 묘화 장치를 이용한 비대칭적인 0.1 ${\mu}{\textrm}{m}$ $\Gamma$-게이트 PHEMT 공정 및 특성에 관한 연구)

  • 임병옥;김성찬;김혜성;신동훈;이진구
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.189-192
    • /
    • 2001
  • We have studied fabrication processes that form asymmetric $\Gamma$-gate with a 0.1${\mu}{\textrm}{m}$ gate length in MMIC's(Monolithic Microwave Integrated Circuits). Asymmetric $\Gamma$-gate was fabricated using mixture of PMMA and MCB. Thus pseudomorphic high electron mobility transistor (PHEMT's) with 0.1${\mu}{\textrm}{m}$ gate length was fabricated via several steps such as mesa isolation, metalization, recess, passivation. PHEMT's has the -1.75 V of pinch-off voltage (Vp), 63 mA of drain saturation current(Idss and 363.6 mS/mm of maximum transconductance (Gm) in DC characteristics and current gain cut-off frequency of 106 GHz and maximum frequency of oscillation of 160 GHz in RF characteristics.

  • PDF

Experimental Study on Flow Structure of Wake Behind a Rotationally Oscillating Circular Cylinder (주기적으로 회전진동하는 원주 후류의 유동구조에 관한 실험적 연구)

  • Lee Jung-Yeop;Lee Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.298-305
    • /
    • 2006
  • The flow around a circular cylinder which oscillates rotationally with a relatively high forcing frequency has been investigated experimentally using flow visualization and hot-wire measurements. Dominant parameters are Reynolds number (Re), oscillation amplitude $({\theta}_A)$, and frequency ratio $F_R=f_f/f_n$, where $f_f$ is the forcing frequency and $f_n$ is the natural frequency of vortex shedding. Experiments were carried out under the conditions of $Re=4.14{\times}10^3,\;{\theta}_A={\pi}/6$, and $0{\leq}F_R{\leq}2$. The effect of frequency ratio $F_R$ on the flow structure of wake was evaluated by measuring wake velocity profile and spectral analysis of hot-wire signal. Depending on the frequency ratio $F_R$, the cylinder wake has 5 different flow regimes. The vortex formation length and vortex shedding frequency are changed significantly before and after the lock-on regime. The drag coefficient was reduced under the condition of $F_R<1.0$ and the maximum drag reduction is about 33% at $F_R=0.8$. However, the drag is increased as $F_R$ increases beyond $F_R=1.0$. This active flow control method can be effective in aerodynamic applications, if the forcing parameters are selected optimally.

Numerical simulation of the flow behind a circular cylinder with a rotary oscillation (주기적으로 회전하는 원봉 주위의 후류에 관한 수치적 연구)

  • Baek, Seung-Jin;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.267-279
    • /
    • 1998
  • A numerical study was made of flow behind a circular cylinder in a uniform flow, where the cylinder was rotationally oscillated in time. The temporal behavior of vortex formation was scrutinized over broad ranges of the two externally specified parameters, i.e., the dimensionless rotary oscillating frequency (.110.leq. $S_{f}$.leq..220) and the maximum angular amplitude of rotation (.theta.$_{max}$=15 deg., 30 deg. and 60 deg.). The Reynolds number (Re= $U_{{\inf}D}$.nu.) was fixed at Re=110. A fractional-step method was utilized to solve the Navier-Stokes equations with a generalized coordinate system. The main emphasis was placed on the initial vortex formations by varying $S_{f}$ and .theta.$_{max}$. Instantaneous streamlines and pressure distributions were displayed to show the vortex formation patterns. The vortex formation modes and relevant phase changes were characterized by measuring the lift coefficient ( $C_{L}$) and the time of negative maximum $C_{L}$( $t_{-C}$$_{Lmax}$) with variable forcing conditions.s.tions.s.s.s.

A Study on Fluid Surface Movement Phenomena of Magnetic Fluids in a Container Subjected to a Horizontal Oscillation (수평진동이 있는 용기내 자성유체 액면 동요 현상에 관한 연구)

  • Kim, Dae-Wan;Park, Joung-Woo;Seo, Lee-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.5
    • /
    • pp.183-187
    • /
    • 2012
  • In this paper, fluid movement of magnetic fluid which has free surface is investigated in a container subjected to a horizontal oscillation. Here, the vertical magnetic field is applied from the bottom of this container. The experiment is performed on the magnetic fluid in a rectangular and a cylindrical container and the effects of magnetic force exerted on the magnetic fluid are investigated on the resonance frequency and liquid surface displacement. The increase of magnetic field affects on the maximum resonance point and the liquid surface displacement. In result, it changes the amplitude of the surface wave and the period of sloshing fluid movement.

Emitter structure dependence of the high frequency performance of AlGaAs/GaAs HBTs (에미터 구조변화에 따른 AlGaAs/GaAs HBT의 고주파 특성)

    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.167-171
    • /
    • 2000
  • Emitter structure effects on the characteristics of AlGaAs/GaAs HBTs have been investigated. Cut-off frequency and maximum oscillation frequency were changed with emitter dimension, and it was attributed to the variation of resistance and junction capacitance with emitter structure. Emitter perimeter and junction area also affected the high frequency performance of HBTs.

  • PDF

Optimization Study on the Epitaxial Structure for 100nm-Gate MHEMTs with InAlAs/InGaAs/GaAs Heterostructure (InAlAs/InGaAs/GaAs 100 nm-게이트 MHEMT 소자의 에피 구조 최적화 설계에 관한 연구)

  • Son, Myung-Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.107-112
    • /
    • 2011
  • This paper is for improving the RF frequency performance of a fabricated 100nm ${\Gamma}$-gate MHEMT, scaling down vertically for the epitaxy-structure layers of the device. Hydrodynamic simulation parameters are calibrated for the fabricated MHEMT with the modulation-doped $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}$As heterostructure grown on the GaAs substrate. With these calibrated parameters, simulations for the vertically-scaled epitaxial layers of the device are performed and analyzed for DC/RF characteristics, including the quantization effect due to the thickness reduction of InGaAs channel layer. A newly designed epitaxy-structure device shows higher extrinsic transconductance, $g_m$ of 1.556 S/mm, and higher frequency performance, $f_T$ of 222.5 GHz and $f_{max}$ of 849.6 GHz.

Transferrable single-crystal silicon nanomembranes and their application to flexible microwave systems

  • Seo, Jung-Hun;Yuan, Hao-Chih;Sun, Lei;Zhou, Weidong;Ma, Zhenqiang
    • Journal of Information Display
    • /
    • v.12 no.2
    • /
    • pp.109-113
    • /
    • 2011
  • This paper summarizes the recent fabrication and characterizations of flexible high-speed radio frequency (RF) transistors, PIN-diode single-pole single-throw switches, as well as flexible inductors and capacitors, based on single-crystalline Si nanomembranes transferred on polyethylene terephthalate substrates. Flexible thin-film transistors (TFTs) on plastic substrates have reached RF operation speed with a record cut-off/maximum oscillation frequency ($f_T/f_{max}$) values of 3.8/12 GHz. PIN diode switches exhibit excellent ON/OFF behaviors at high RF frequencies. Flexible inductors and capacitors compatible with high-speed TFT fabrication show resonance frequencies ($f_{res}$) up to 9.1 and 13.5 GHz, respectively. Robust mechanical characteristics were also demonstrated with these high-frequency passives components.