• Title/Summary/Keyword: Maximum occlusal force

Search Result 64, Processing Time 0.025 seconds

A FINITE ELEMENT ANALYSIS OF THE DISPLACEMENT AND STRESS DISTRIBUTION OF HUMAN DRY MANDIBLE DURING THE MANDIBULAR FIRST MOLAR CERVICAL TRACTION (유한요소법에 의한 하악제 1 대구치의 Cervical Traction의 효과에 관한 역학적 연구)

  • Ahn, Eui-Young;Chung, Kyu-Rhim
    • The korean journal of orthodontics
    • /
    • v.19 no.1 s.27
    • /
    • pp.45-59
    • /
    • 1989
  • This study was undertaken to analyze the displacement and stress distribution in the mandible according to the pulling directions during mandibular first molar cervical traction after mandibular second molar extraction. The 3-dimensional finite element method(FEM) was used for a mathematical model composed of 594 elements and 1019 nodes. An orthodontic force, 450 gm, was applied to the each mandibular first molar in parallel, and below the occlusal plane by $7^{\circ}\;and\;25^{\circ}$ and meet the midsagittal plane by $40^{\circ}$ toward posterior direction. The results were as follows: 1. Mandibular teeth were displaced in more downward, posterior and lateral direction. Especially high stress was noted in case of parallel pull than in case of below the occlusal plane by $7^{\circ}\;and\;25^{\circ}$. 2. Mandibular first molar was moved bodily. 3. Generally, alveolar bone, mandibular body, ascending ramus and mandibular angle portion were displaced in downward, posterior and lateral direction. But coronoid process was displaced in downward, forward and lateral direction, and anterior and inner middle portion of condyle head and neck were displaced in downward, forward and medial direction, and posterior and outer middle portion of condyle head and neck were displaced in upward, forward and medial direction. 4. Maximum stress was observed at the condyle head and neck portion. With steeper direction of force, condyle head and neck showed more stress than parallel relation to the occlusal plane.

  • PDF

Relationship between Forward Head Posture and Craniomandibular Disorders (두개하악장애와 두부전방자세와의 관계)

  • Kyung-Soo Han
    • Journal of Oral Medicine and Pain
    • /
    • v.19 no.1
    • /
    • pp.137-149
    • /
    • 1994
  • This study was performed to investigate the relationship between Forward Head Posture(FHP) and Craniomandlbular Disorders(CMDs). Many studies reported that there was some relationship between them, however, there is still controversy. So It Is necessary to observe and compare many more patients with CMDs wirh normal controls. For the study 85 patients with CMDs and 37 dental students were selected as experimentals and controls, respectively. And the experimentals were classified Into two groups, that is, TMJ internal derangement group and muscle disorders group according to clinical diagnosis. For measuring the FHP, CROM(Cervical-Range-of-Notion)was used. This goniometer is composed of three part. First, gravity goniometer for flexion and extension. Second, magnetic compass and yoke for rotational movement. And last, forward head arm and vertebra locator for forward head posture. Next T-Scan, electronic occlusal analyzer, was used for recording of occlusal contact state. Other items such as maximum opening, lateral excursion, Helkimo's anamnestic index, and muscle palpation point from Friction's craniomandibular index were checked clinically by one examiner. The result of this study were as follows : 1. In male, control group showed much more measurement in resting forward head posture than did experimental group. But there were not significant differences between groups in female subject. From this results, the author contended that CROM is new measuring system and differ from other goniometers in some aspect, so that results should be re-evaluated 2. Mean value of maximum mouth opening in nearly all groups were greater than 40mm. and mouth opening had a significant correlation with occlusal force and with anamnestic index both sex. 3. Mean value of palpation point had not any correlationship with forward head posture in both sex, but there was significant difference between upper and lower group by rounded shouldes. 4. In summary, there was no significant relationship between forward head posture and sign and symptom of Craniomandibular Disorders.

  • PDF

Analysis of Occlusal Contacts Using Add-picture Method (Add-picture 방법을 이용한 교합접촉점 분석)

  • Park, Ko-Woon;Cho, Lee-Ra;Kim, Dae-Gon;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.1
    • /
    • pp.45-58
    • /
    • 2013
  • The purpose of this study was to analyze the area of occlusal contact points using visual method. One subject was selected who had Angle Class I, normal dentition, without dental caries, periodontal disease and temporomandibular disorders. Forty times PVS impressions were taken and 10 pairs casts were fabricated using dental super hard stone. After mounting the casts with customized loading apparatus, 78.9kg/f force was loaded as a maximum biting force. In T-Scan method, occlusal contact points measurement was repeated twice. Then, using Photoshop program (Adobe photoshop CS3, Adobe. San Jose, USA), the pixels which indicated occlusal contact points by color was recognized, and the distribution of recognized pixels were calculated to area. In Add picture method, polyether bite material applied to the occlusal surface of the casts. Then, the image of the translucent areas was recorded and classified $0{\sim}10{\mu}m$, $0{\sim}30{\mu}m$, $0{\sim}60{\mu}m$ area by the amount of transmitted light. To acquire occlusal surface, the numbers of pixels from the photograph of the contact area indicated cast converted to $mm^2$. The mean occlusal contact area by two methods was statistically analyzed (paired t-test). Part of the red and pink area in T-Scan image were almost equivalent to the $0{\sim}10{\mu}m$, $0{\sim}30{\mu}m$, $0{\sim}60{\mu}m$ area in Add picture image. The distribution of occlusal contact points were similar, but the average area of occlusal contact points was wider in T-scan image (P<.05). Pink and red area in T-scan image was wider than $0{\sim}10{\mu}m$, $0{\sim}30{\mu}m$ area in Add picture image (P<.05), but similar to $0{\sim}60{\mu}m$area in Add picture image (P>.05). Occlusal contact points in T-scan image did not indicate real occlusal contact points. Occlusal contact areas in T-scan method were enlarged results comparing with those in Add picture method.

OCCLUSAL FORCE AND EMG CHANGE OF MANDIBULAR FRACTURE (악골 골절에서 술 후 교합압 및 근전도 변화)

  • Choi, Yong-Kwan;Han, Se-Jin;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.3
    • /
    • pp.293-299
    • /
    • 2008
  • Bite force is created by the force of adjacent teeth accompanied with tension of masticatory muscle. The bite force value is greater in male than in female and ha maximum value at first molar. Masseter muscle is associated with bite force and during muscle contraction the electric signal is expressed in EMG form. The aim of the study is to assess recovery time for masseter muscle activity and according to each part of bite force after open reduction with internal fixation when mandibular angle fracture and subcondyle fracture occurred. And to determine the appropriate period for mandibular fracture patients to have normal masticatory activity. 30 patients with normal bite condition was selected for control group and from April, 2007 to September, 2007, 20 patients who visited our department of oral and maxillofacial surgery of Dankook University, were selected for the study and were diagnosed as mandibular angle fracture and subcondyle fracture. For control group, the bite force for incisors, canine, premolars and molars and activity of the masseter muscle was measured and compared for 1, 2, 3, 4, 6 and 8 weeks. That was divided as fracture side and normal side. Mann-Whitney U test was performed for significant difference and the following result was obtained. 1. The maximum voluntary bite force for incisors, canine, premolars and molars portion were 0.113 kN, 0.182kN, 0.295kN and 0.486kN and the masseter muscle activity was 0.192 volts in the control group. 2. The maximum bite force at fracture side was recovered by 4th weeks for incisors, 6th weeks for canine and premolars and 8th weeks for molars and the masseter muscle activity was recovered by 6th weeks in the experimental group. 2. The maximum bite force at normal side was recovered by 4th weeks for incisors, 6th weeks for canine, premolars and molars and the masseter muscle activity was recovered by 3rd weeks in the experimental group. 3. The method for internal fixation by 2.0mm miniplates at both superior and inferior border had no complications according for twenty patients and had a satisfactory recovery. According to the result, patient with mandibular angle fracture and subcondyle fracture, 8 weeks was required for bite force recovery. Therefore, patients with open reduction and internal fixation under general anesthesis, it can be assumed that 8 weeks was needed after operation in order to have normal bite force and masseter muscle recovery.

Occlusal Analysis of the Subjects with Chewing Side Preference Using the T-Scan II System (T-Scan II 시스템을 이용한 습관적 편측저작자들의 교합 분석)

  • Park, Eun-Hee;Kim, Mee-Eun;Kim, Ki-Suk
    • Journal of Oral Medicine and Pain
    • /
    • v.31 no.3
    • /
    • pp.245-254
    • /
    • 2006
  • While orofacial pain or various dental factors are generally considered as the primary cause of unilateral chewing tendency, there exist several studies indicating that dental factors did not affect the preferred chewing side. The aim of this study was to examine difference of occlusal scheme between the subjects with and without chewing side preference. The difference between the chewing and non-chewing sides in the unilateral chewing group was investigated as well. Computerized, T-Scan II system was used for occlusal analysis. 20 subjects for the unilateral chewing group (mean age of $25.25{\pm}2.84$ years) and 20 subjects for the bilateral chewing group (mean age of $27.00{\pm}5.07$ years) were selected by a questionnaire on presence or absence of chewing side preference and those with occlusal problem or pain and/or dysfunction of jaw were excluded. T-Scan recordings were obtained during maximum intercuspation and excursion movement. The number of contact points, relative occlusal force ratio between right and left sides, tooth sliding area and elapsed time throughout the maximum intercuspation were calculated. Elapsed time for excursion was also investigated. The results of this study shows that the unilateral chewing group had the smaller average tooth contact areas compared with those of the bilateral group (p<0.005). In the unilateral chewing group, the contact areas of non-chewing side are smaller than those of chewing side (p<0.005). The contact areas on their preferred sides were not significantly different with those of right or left side of the subjects without chewing side preference. There was no significant difference in the elapsed time during maximum intercuspation and lateral excursion, the sliding areas and relative of right-to-left occlusal force ratio between the two groups. From the results of this study, it is likely that individuals prefer chewing on the side with more contact areas for efficient chewing.

Effects of Occlusal Condition and Clenching Force on the Mandibular Torque Rotational Movement (교합조건 및 이악물기 힘의 변화가 하악의 비틀림 회전운동에 미치는 영향)

  • Oh, Min-Jung;Han, Kyung-Soo
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.4
    • /
    • pp.411-426
    • /
    • 2005
  • The purpose of this study was to investigate the effects of occlusal condition and clenching level on the mandibular torque rotational movement. For this study, healthy 14 men without any symptoms and signs of temporomandibular disorders were selected. Mandibular torque rotational movement was observed in each circumstance of combination of three occlusal conditions such as natural dentition, with wafer of 3.6 mm thickness, and wafer with resin stop of 14 mm thickness total during hard biting of bite stick at maximum voluntary contraction(MVC) and 50% of MVC level of surface EMG activity of masseter muscle. Electromyographic activity and mandibular torque rotational movement were observed using BioEMG and BioEGN in $BioPak^{(R)}$ system. Each biting movement in each circumstance was composed of clenching one time and hard biting of wooden stick two times. The observed items were opening distance, velocity and amount of torque rotational movement in mandibular movement, and the data were statistically processed with $SPSS^{(R)}$ windows (ver.10.0). The results of this study were as follows: 1. There were no differences in the mandibular movement distance between those value in both biting sides, and between those in both clenching forces, but the mandibular velocity showed a different results by clenching force. For the amount of torque rotational movement, there were no difference in the value of the frontal plane but some significant difference was in the value of the horizontal plane by biting side. 2. The mandibular movement distance and the mandibular velocity in both planes were higher by maximum voluntary contraction than those by half maximum voluntary contraction, and amount of torque rotational movement in the horizontal plane was also increased by maximum voluntary contraction. 3. The opening distance in both planes were decreased with the increase of vertical dimension of occlusion, namely, by the occlusal appliances, and this pattern was also showed in the mandibular velocity in case of hard biting by maximum voluntary contraction. However, the amount of torque rotational movement were not different by the increase of vertical dimension of occlusion. 4. The value of angle and distance of the torque rotational movement in the hard biting of wooden stick were generally higher than those in the clenching without wooden stick in both planes without regard to occlusal conditions and/or clenching forces.

Stress distribution in premolars restored with inlays or onlays: 3D finite element analysis

  • Yang, Hongso;Park, Chan;Shin, Jin-Ho;Yun, Kwi-Dug;Lim, Hyun-Pil;Park, Sang-Won;Chung, Hyunju
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.184-190
    • /
    • 2018
  • PURPOSE. To analyze stress distribution in premolars restored with inlays or onlays using various materials. MATERIALS AND METHODS. Three-dimensional maxillary premolar models of abutments were designed to include the following: 1) inlay with O cavity (O group), 2) inlay with MO cavity (MO group), 3) inlay with MOD cavity (MOD group), and 4) onlay (ONLAY group). A restoration of each inlay or onlay cavity was simulated using gold alloy, e.max ceramic, or composite resin for restoration. To simulate masticatory forces, a total of 140 N static axial force was applied onto the tooth at the occlusal contact areas. A finite element analysis was performed to predict the magnitude and pattern of stresses generated by occlusal loading. RESULTS. Maximum von Mises stress values generated in the abutment teeth of the ONLAY group were ranged from 26.1 to 26.8 MPa, which were significantly lower than those of inlay groups (O group: 260.3-260.7 MPa; MO group: 252.1-262.4 MPa; MOD group: 281.4-298.8 MPa). Maximum von Mises stresses generated with ceramic, gold, and composite restorations were 280.1, 269.9, and 286.6 MPa, respectively, in the MOD group. They were 252.2, 248.0, 255.1 MPa, respectively, in the ONLAY group. CONCLUSION. The onlay design (ONLAY group) protected tooth structures more effectively than inlay designs (O, MO, and MOD groups). However, stress magnitudes in restorations with various dental materials exhibited no significant difference among groups (O, MO, MOD, ONLAY).

A STUDY OF THE NORMAL & ABNORMAL OCCULSAL PATERNS IN ADULTS USING THE SUPERIMPOSED RUBBER PATTERN METHOD (Superimposed Rubber Pattern법에 의한 성인 정상 및 비정상 교합자의 교합 양상에 관한 연구)

  • Choi, Dae-Gyun;Lee, Sung-Bok;Kwon, Young-Hyuk;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.3
    • /
    • pp.467-491
    • /
    • 1995
  • In order to analyze the occlusin of intercuspation with maximun bite force, fifteen healthy adult subjects with the ages 23 to 27 were studied(Group1 ; 5-normal occlusion with Angle's Class1, Group2 ; 5-Angle's Class2 malocclusion, Group3 ; 5-Angle’s Class3 malocclusion). Head Position was fixed with occlusal plane paralleling to horizontal line and occlusal registration r cord was made with polyether rubber impression material(Ramitec, ESPECo. West Germany). After all subject were trained for maximum intercuspation at least 5 times, occlusal registration procedure was repeated for this study. Lower posterior rubber occlusal registration records were sliced with 1mm thickness using precision metal sliding channel(Hitachi Ind. Co., Japan). Gross sectional drawings were traced from occluding view of upper and lower posterior teeth on the rubber slices using digitizer, and superimposed for the determination of each drawing distance(Superimposed Rubber Pattern Method). Based on superimposed rubber pattern drawings, total area of occlusal view, sum of each area of the 5 divided occlusal contact provinces and its ratio, total area and number of occlusal contact area were determined to elucidate occlusal stability in the normal and abnormal occlusion groups. The data were analysed by t-test(p=0.05) to determine statistical significance. The obtained results were as follows : 1. Group1 showed the largest standard area with occlusal view of the lower posterior teeth and Group3 showed the smallest area. There was a significant difference between Group2 and Group3(p=0.025), and Gropu1 was not statistically different for both Group2 and Group3. 2. Means and ratio of the under 2.0mm area(D) and ratio showed $197.49mm^2$, 59.76% in Group1, $188,69mm^2$, 56.10% in Group2, and $174.23mm^2$, 55.76% in Group3. The results that Group1 has the most area/ratio and Group3 has the least area/ratio can be considered Group1 is the most advantageous for masticatory effective area, and Group3 is the least adnantageous. 3. Means and ratio of the under 1.0mm area(C) were $198.96mm^2$, 42.65% in Group1, 123.06$mm^2$, 46.58% in Group2, and $92.24mm^2$, 29.52% in Group3. These data means that Group1 is the most advantageous in terms of masticatory effective area and Group3 is the least. 4. Means and ratio of the under 0.5mm area(B) were $86.68mm^2$, 26.68% in Group1, $62.98mm^2$, 18.71% in Group2, and $36.44mm^2$, 11.66% in Group3. These can also be considered Group1 is the most advantageous for masticatory effective area and occlusal stability. 5. Means and ratio of the under 0.05mm area(A) were $30.92mm^2$, 9.21% in Group1, $14.31mm^2$, 4.25% in Group2, and $7.59mm^2$, 2.43% in Group3. The area ratio of the each subject group was(4.1) : (1.9) : (1)and the data of the under 0.05mm area has the intimate relationship with inter-group and intra-group data/ratio. 6. First molar showed the most occlusal contact points in all subject group and Group1 showed somewhat uniformly distributed occlusal contact point except first premolar. In Group2, all contact point in posterior teeth showed significantly reduced distribution except first molar. Group3 showed evenly distributed contace points in first and second molars.

  • PDF

A FINITE ELEMENT ANALYSIS ON THE EFFECT OF THE REVERSE HEADGEAR TO THE MAXILLARY COMPLEX (REVERSE HEADGEAR가 상악골체에 미치는 영향에 관한 유한요소법적 분석)

  • Kim, Joo-Young;Sohn, Byung-Hwa
    • The korean journal of orthodontics
    • /
    • v.15 no.1
    • /
    • pp.7-22
    • /
    • 1985
  • The purpose of this study was to analyze the stress distribution and the displacement in the maxillary complex after the application of the reverse headgear. The direction of force was parallel to the occlusal plane. Orthopedic force,300gm, was applied to the maxilla of the dry human skull in a forward direction. The stress distribution and the displacement within the maxillary Complex was analyzed by a 3-dimensional finite element method. The results were as follows: 1. The stress distribution at the molar region was greater than that at the anterior. 2. The stress distribution at the lateral side of the premaxilla was greater than that at the middle aide, especially high stress was noted at the canine eminence. 9. Compressive stress was noted only at the frontozygomatic suture of the zygomatic arch. 4. A forward, upward, and sideward displacement was noted at the entire nodal points of the zygomaticomaxillary suture portion. A displacement with a slight rotation was observed on the transverse palatine suture. 5. The maximum stress was observed at the lateral side of the maxillary tuberosity area, and generally the forward and downward displacement was noted at all this area.

  • PDF

Effect of bite force on orthodontic mini-implants in the molar region: Finite element analysis

  • Lee, Hyeon-Jung;Lee, Kyung-Sook;Kim, Min-Ji;Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.43 no.5
    • /
    • pp.218-224
    • /
    • 2013
  • Objective: To examine the effect of bite force on the displacement and stress distribution of orthodontic mini-implants (OMIs) in the molar region according to placement site, insertion angle, and loading direction. Methods: Five finite element models were created using micro-computed tomography (microCT) images of the maxilla and mandible. OMIs were placed at one maxillary and two mandibular positions: between the maxillary second premolar and first molar, between the mandibular second premolar and first molar, and between the mandibular first and second molars. The OMIs were inserted at angles of $45^{\circ}$ and $90^{\circ}$ to the buccal surface of the cortical bone. A bite force of 25 kg was applied to the 10 occlusal contact points of the second premolar, first molar, and second molar. The loading directions were $0^{\circ}$, $5^{\circ}$, and $10^{\circ}$ to the long axis of the tooth. Results: With regard to placement site, the displacement and stress were greatest for the OMI placed between the mandibular first molar and second molar, and smallest for the OMI placed between the maxillary second premolar and first molar. In the mandibular molar region, the angled OMI showed slightly less displacement than the OMI placed at $90^{\circ}$. The maximum Von Mises stress increased with the inclination of the loading direction. Conclusions: These results suggest that placement of OMIs between the second premolar and first molar at $45^{\circ}$ to the cortical bone reduces the effect of bite force on OMIs.