• Title/Summary/Keyword: Maximum growth rate

Search Result 1,201, Processing Time 0.028 seconds

Ecotypic Variation in Salinity Responses of Ulva pertusa(Chlorophyta) from the Korean Coast

  • Kim, Kwang-Young;Suh, Hae-Lip
    • Journal of the korean society of oceanography
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 1996
  • Salinity ecotypes in Ulva pertusa Kjellman were examined for the growth responses of the three isolates taken from different salinity regimes. All isolates showed a broad salinity tolerance, but growth patterns were correlated with the salinity regime of their original habitat. The germlings from Anin exhibited optimum growth at the native salinity of 32%. The germlings from Yongyon which had hypersaline habitats were tolerable to high salinity, i.e. growth rates peaked at 40%, whereas those from Samgando which had low salinities achieved maximum growth rate at 24\%. The germlings of inter-isolate cross demonstrated intermediate growth response between that of their respective parents. Our data also clearly indicated intraspecific differences among the three isolates, which was interpreted as development of different physiological ecotypes. We conclude that U. pertusa may consist of several ecotypes, each of which has some capacity for physiological adaptation to salinity variations.

  • PDF

Production and Application of Galacto-oligosaccharides from Lactose by a Recombinant $\beta$-Galactosidase of Bifidobacterium infantis Overproduced by Pichia pastoris

  • Jung, Sung-Je;Lee, Byong-Hoon
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.514-518
    • /
    • 2008
  • After overproduction of a recombinant $\beta$-galactosidase of Bifidobacterium infantis in Pichia pastoris, a synthesis of galacto-oligosaccharides (GOS) from 36% lactose using the enzyme (170.74 U/mg) was investigated. The transgalactosylation ratio reached up to 25.2% with 83.1% conversion of initial lactose and the maximum yield of GOS was 40.6%. The GOS syrup was composed of a 13.43% galacto-oligosaccharides, 5.06% lactose, and 8.76% monosaccharides. The prebiotic effect of GOS on the growth of bifidobacteria and lactobacilli strains was investigated in vitro. The maximum growth rate of Bifidobacterium breve and Lactobacillus acidophillus in GOS syrup (5%, v/v) media were 0.49 and 0.96/hr that are higher than those in 1%(w/v) galactose and 1%(w/v) lactose containing media. However, there was no significant difference between the specific growth rates of L. acidophillus in 1%(w/v) glucose and 5%(v/v) GOS syrup. Our data showed that GOS definitely promoted the growth of B. breve ATCC $15700^T$ and L. acidophilus ATCC 33323.

The Effect of Compressive Residual Stress on The Fatigue life in Spring Steel for vehicles (차량용 스프링강의 피로수명에 미치는 압축잔류응력의 영향)

  • Park, Keyoung-Dong;Jung, Chan-Gi
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.281-287
    • /
    • 2002
  • Nowadays, many components used in machinery industry is required lightness and high strength. Therefore, the effects of compressive residual stress by shot-peening which is method to improve fatigue lift of spring steel (JISG SUP-9), which used in suspension of automobile, on fatigue crack growth characteristics was investigated with considering fracture mechanics. So, we can obtain followings 1. The fatigue crack growth rate on stage II is conspicuous with the size of compressive residual stress and is dependent on Paris equation. 2. Although the maximum compressive residual stress is deeply and widely formed from surface, fatigue life does not improve than when maximum compressive residual stress is formed in surface. 3. The threshold stress intensity factor range is increased with increasing compressive residual stress. 4. In fracture surface of fatigue crack growth it is investigated that compressive residual stress remarkably retards fatigue crack growth.

  • PDF

The Effect of Compressive Residual Stress on The Fatigue life in Spring Steel for vehicles (차량용 스프링강의 피로균열진전에 미치는 압축잔류응력의 영향)

  • 박경동;하경준;박형동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.82-90
    • /
    • 2003
  • Nowadays, many components used in machinery industry is required lightness and high strength. The shot-peening method is used in order to improve the fatigue life of spring steel(JIS G SUP-9) which is used in suspension of automobile. The compressive residual is induced in this shot-peening process. This paper investigated the effect of the residual compressive stress on the fatigue crack growth characteristics. Main results are summarized as follows. 1. The fatigue crack growth rate on stage II is conspicuous with the level of compressive residual stress and is dependent on Paris equation. 2. Although the maximum compressive residual stress is deeply and widely formed from surface, it does not improve the fatigue life comparing when maximum compressive residual stress is formed in surface. 3. The threshold stress intensity factor range is increased with increasing compressive residual stress. 4. In fracture surface of fatigue crack growth it is investigated that compressive residual stress remarkably retards fatigue crack growth.

Characterization of degradation of fish wastes using mixed microorganisms (복합미생물을 이용한 수산폐기물의 분해특성)

  • 정해윤;정해윤;김중균
    • Journal of Life Science
    • /
    • v.11 no.1
    • /
    • pp.76-82
    • /
    • 2001
  • Fifteen species of microorganisms were isolate form the intestines of fishes, fish feed, and ferment. Eleven microorganisms except HY4, HY8, HY12, and HY13 were Gram-positive, and HY1, HY2, HY3, HY5, HY6, and HY7 produced lactic acid. The species of HY1, HY2, HY3, HY4, HY5, HY6, HY13, and HY14 showed some growth in the medium containing 1% of NaCl. Except HY6, HY7, HY8, HY12 and HY5, 10 isolates had proteolytic activity, whereas only HY13 and HY14 had lipase activity. From all the results four isolates (HY3, HY4, HY13 and HY14) were chosen for the degradation of fish wastes. There was no mutual inhibition among the microorganisms, and the optimum temperature and pH for the growth of the mixed culture were found to be 3 2$\^{C}$ and 7, respectively. Under the optimum growth conditions the maximum optical density and the maximum specific growth rate were estimated to be 2.35 and {TEX}$0.46h^{-1}${/TEX}, respectively. Major microorganisms in the mixed culture at the log-phase were HY3 and HY4, which occupied 70%. The degrading efficiency of fish waste by the mixed microorganisms was 2.3 times higher, compared to control. The total amount of free amino acids in the degraded products from fish wastes was 39g/100g protein and little odor was produced by the mixed microorganisms after 48 hours.

  • PDF

Effects of Jasmonic Acid-Cellulase Combined Elicitors on the Paclitaxel Production in Suspension Cultures of Taxus wallichiana Zucc (Taxus wallichiana Zucc. 현탁세포에서 Jasmonic Acid-Cellulase 복합 Elicitor가 Paclitaxel 생합성에 미치는 영향)

  • Hoi, Nguyen Ngoc;Luong, Hoang Van;Long, Nguyen Van;Duong, Vu Binh;Byun, Sang-Yo
    • KSBB Journal
    • /
    • v.25 no.2
    • /
    • pp.193-198
    • /
    • 2010
  • Cell cultures of Taxus wallichiana Zucc. were made to enhance the production of anticancer agent paclitaxel. In suspension cultures, the maximum cell growth rate in exponential growth phase was 0.14 $day^{-1}$ which was correlated to 4.96 days of cell doubling time. The production of paclitaxel was non-growth associated. The paclitaxel production was started after the exponential growth phase and increased to declined phase where the maximum concentration was observed. Various elicitors were tested to enhance the production of paclitaxel. The combination of two elicitors of jasmonic acid and cellulase increased the production of paclitaxel 1.8 and 3.1 times compared to paclitaxel production by individual elicitor respectively.

Influence of Oxygen Concentration on the Food Consumption and Growth of Common Carp, Cyprinus carpio L. (잉어 Cyprinus carpio의 먹이 섭취량과 성장에 미치는 용존산소량의 영향)

  • SAIFABADI Jafar;KIM In-Bae
    • Journal of Aquaculture
    • /
    • v.2 no.2
    • /
    • pp.53-90
    • /
    • 1989
  • Feeding proper level of ration matchable with the appetite of fish will enhance production and also prevent waste of food and its consequence, side effects such as pollution of culture medium. To pursue this goal, elaborate studies on dissolved oxygen concentrations- as the major force in inducing appetite and the growth outcome are necessary. The growth of common carp of 67, 200, 400, 600, and 800 gram size groups was studied at oxygen concentrations ranging from 2.0 to 6 mg/$\iota$ in relation to rations from 1 to as many percent of the initial body weight as could be consumed under constant temperature of $25^{\circ}C$. The results from the experiments are summarized as followings; 1. Appetite: The smaller fish exhibited higher degree of appetite than the bigger ones at the same oxygen concentrations. The bigger the fish the less tolerant it was to the lower oxygen thersholds, and the degree of tolerence decreased as ration level increased. 2. Growth : Growth rate (percent per day) increased - unless consumption was suppressed by low oxygen levels- as the ration was increased to maximum. In case of 67 g fish, it reached the highest point of $5.05\%$ / day at $7\%$ ration under 5.0 mg/$\iota$ of oxygen. In case of 200 g fish, the maximum growth rate of $3.75\%$/day appeared at the maximum ration of $6\%$ under 5.5 mg/$\iota$ of oxygen. In 400 g fish, the highest growth of $3.37\%$/day occurred at the maximum ration of $5\%$ and 6.0 mg/$\iota$ of oxygen. In 600 g fish, the highest growth rate of $2.82\%$ /day was at the maximum ration of $4\%$ under 5.5 mg/$\iota$ oxygen. In case of 800g fish, the highest growth rate of $1.95\%$/day was at maximum tested ration of $3\%$ under 5.0 mg/$\iota$ oxygen. 3. Food Conversion Efficiency: Food conversion efficiency ($\%$ dry feed converted into the fish tissue) first increased as the ration was increased, reached maximum at certain food level, then started decreasing with further increase in the ration. The maximum conversion efficiency stood at higher feeding rate for the smaller fish than the larger ones. In case of 67 g fish, the maximum food conversion efficiency was at $4\%$ ration within 3.0-4.0 mg/$\iota$ oxygen. In 200g fish, the maximum efficiency was at $3\%$ ration within 4.0-4.5 mg/$\iota$ oxygen. In 400g fish, the maximum efficiency was at $2\%$ ration within 4.0 - 4.5 mg/$\iota$ oxygen. In 600 and 800g fish, the maximum conversion efficiency shifted to the lowest ration ($1\%$) and lower oxygen ranges. 4. Behaviour: The fish within uncomfortably low oxygen levels exhibited suppressed appetite and movements and were observed to pass feces quicker and in larger quantity than the ones in normal condition; in untolerably low oxygen the fish were lethargic, vomited, and had their normal skin color changed into pale yellow or grey patches. All these processes contributed to reducing food conversion efficiency. On the other hand, the fish within relatively higher oxygen concentrations exhibited higher degree of movement and their food conversion tended to be depressed when compared with sister groups under corresponding size and ration within relatively low oxyen level. 5. Suitability of Oxygen Ranges to Rations: The oxygen level of 2.0- 2.5 mg/$\iota$ was adequate to sustain appetite at $1\%$ ration in all size groups. As the ration was increased higher oxygen was required to sustain the fish appetite and metabolic activity, particularly in larger fish. In 67g fish, the $2\%$ ration was well supported by 2.0-2.5 mg/$\iota$ range; as the ration increased to $5\%$, higher range of 3.0-4.0 mg/$\iota$ brought better appetite and growth; from 5 till $7\%$ (the last tested ration for 67 g fish) oxygen levels over 4.0 mg/$\iota$ could sustain appetite. In 200 g fish, the 2 and $3\%$ rations brought the best growth and conversion rates at 3.5-4.5 mg/$\iota$ oxygen level; from 3 till $6\%$ (the last tested ration at 200 g fish) oxyge groups over 4.5 mg/$\iota$ were matchable with animal's appetite. In 400, 600, and 800 g fish, all the rations above $2\%$ had to be generally supported with oxygen levels above 4.5 mg/$\iota$.

  • PDF

Studies on the Utilization of Phenolic Substance by Yeast (효모에 의한 phenol 성 물질의 자화에 관한 연구)

  • 김상달;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.6 no.4
    • /
    • pp.155-159
    • /
    • 1978
  • Phenol utilizing yeast No. 558 isolated from soil sewage sediment was able to use substantial amount of phenol as the sole carbon source, and the biomass productivity by this organism was very excellent. This organism could grow well in 1000 ppm of phenol concentration, the maxim-um specific growth rate obtainable at pH 5.0, 3$0^{\circ}C$ was 0.27/hr., and the biomass yield coefficient Y vs. consumed phenol was 3.2. Maximum production rate of biomass was observed at 35$^{\circ}C$, pH 3.5 to pH 4.5, and the addition of the 0.005~0. 01% yeast extract was the most effective. Addition of HgCl$_2$ and phenyl hydrazine, inhibitors of oxide-reductase, in the phenol containing cultural liquid caused this organism no-growth at the concentration of 10$^{-5}$ M, 10$^{-3}$ M respectively. This organism could utilize not only phenol but catechol, resorcinol and benzidine.

  • PDF

KINETICS OF AUTOTROPHIC DENITRIFICATION FOR THE BIOFILM FORMED ON SULFUR PARTICLES : Evaluation of Molecular Technique on Monitoring Biomass Growth

  • Kim, Sung-Youn;Jang, Am;Kim, I-Tae;Kim, Kwang-Soo;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.10 no.6
    • /
    • pp.283-293
    • /
    • 2005
  • Characteristics of sulfur-based autotrophic denitrification in a semi-continuous type reactor and the kinetic parameters were studied. Enriched autotrophic denitrifying culture was used for the reactor operation. Biomass growth on sulfur particles and in the liquid medium was monitored using the DAPI staining method. From the result of ion concentration changes and the biomass growth, maximum specific growth rate, ${\mu}_{max}$, and the half velocity constant, $K_M$, were estimated as $0.61\;d^{-1}$ and 3.66 mg/L, respectively. Growth yield coefficient, Y values for electron acceptor and donor were found as 0.49 gVSS/g N and 0.16 gVSS/g S. The biomass showed specific denitrification rate, ranging 0.86-1.13 gN/g VSS-d. A half-order equation was found to best simulate the denitrification process in the packed bed reactor operated in the semi-continuous mode.

The Effect of Foliage Clipping on the Growth and the Agronomic Characteristics, as Affected by its Time, Degree, and Nitrogen Top-Dressing, in Rice plants (절엽의 시기 및 정도, 그리고 절엽 후의 시비가 수도의 생육 및 수량제형질의 변화에 미치는 영향)

  • Eun-Woong Lee;Yong-Woong Kwon;Pyeong-Ki Yim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.4 no.1
    • /
    • pp.81-91
    • /
    • 1968
  • To investigate the effects of foliage clipping time, degree, and nitrogen top-dressing after clipping on the growth and the agronomic characteristics, rice plants grown under ordinary cultural practices were clipped at the maximum tiller stage, 10 days prior to, and after that stage, respectively, with varying clipping, height, as 0, 1/3, 1/2, and 2/3 of plant height. And nitrogen was top-dressed at the rate of 0, 2, 4, 6 kg per 10 are immediately after clipping. The variety used was "Jinheung". The results obtained are outlined as follows: 1. Effect of clipping on the growth of rice plant: The subsequent growth was quite rapid during 10 days after clipping, and resulted, on the whole, in nearly complete recovery of defoliation by 20 days after clipping. a) Generally, the later the clipping time, the more growth accelerated. Rice plants clipped before the differentiation of ear primordia nearly recovered the damage, and in certain cases exceeded non-clipped plants in height. But the height of the rice plant clipped after the differentiation of ear primordia was somewhat smaller than that of non-clipped. b) Growth rate was rather rapid in the case of severe cutting, and the height of slightly clipped plants was taller than that of non-clipped plants. However, rice plants clipped to the extent of 2/3 of plant height did not fully recover the damage of defoliation compared to non-clipped plants. c) Nitrogen dressing was effective to rapid recovery of defoliation, the effect increasing with the increasing amount of application. d) Ear-heading was delayed in clipped plots, and this tendency was more apparent with later clipping time, more severe clipping, and increased amounts of nitrogen application after cutting. The range was 6 days at maximum. 2. Effect of defoliation on the yield and its components of rice plants: The yield response to clipping varied somewhat with its time, degree, and nitrogen application after cutting: yield increase of about 10% and decreasement of about 25% at maximum compared to the control plot. Grain yield of most plots was decreased. a) Clipping before the differentiation of ear primordia did not much affect the agronomic characteristics of rice plants. However, clipping after that growth stage decreased culm length, number of panicles, number of spikelets per panicle, and maturing rate of grain to some extent. Consequently this treatment resulted in decrease of about 10% in grain and straw production in spite of increase in panicle length and effective tillering rate. b) Slight, clipping decreased number of spikelets per panicle a little, and the yield of grain and straw by 4-5%, although effective tillering rate was somewhat increased. With severe clipping, panicle kngth, number of panicles, and number of spikelets per panicle decreased more, and the yield of grain and straw decreased about 10%. c) Nitrogen dressing after clipping at the rate of 2 kg per 10 are was effective in increasing grain yield. Nitrogen application over the rate of 4 kg per 10 are increased culm length, number of spikelets per panicle, and straw production, but this decreased the maturing rate, and the 1, 000-grains weight to some extent and resulted in decrease of grain yield.

  • PDF