• Title/Summary/Keyword: Maximum driving current

Search Result 125, Processing Time 0.031 seconds

Concept of Effective Gate-Source Overlap Length in Invertedstaggered TFT Structures

  • Jung, Keum-Dong;Kim, Yoo-Chul;Kim, Byeong-Ju;Park, Byung-Gook;Shin, Hyung-Cheol;Lee, Jong-Duk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1270-1272
    • /
    • 2007
  • Analytic equations are derived from physical quantities in the gate-source overlap region and the concept of effective gate-source overlap length is proposed. The effective overlap length can be affected by gate voltage, insulator thickness and semiconductor thickness, and the overlap length should be larger than the length to obtain maximum driving current.

  • PDF

A New GTO Driving Technique for Faster Switching (고속 스윗징을 위한 새로운 GTO 구동기법)

  • Kim, Young-Seok;Seo, Beom-Seok;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.244-250
    • /
    • 1994
  • This paper presents the design of a new turn-off gate drive circuit for GTO which can accomplish faster turn-off switching. The major disadvantage of the conventional turn-off gate drive technique is that it has a difficulty in realizing high negative diS1GQT/dt because of VS1RGM(maximum reverse gate voltage) and stray inductances of turn-off gate drive circuit[1~2]. The new trun-off gate drive technique can overcome this problem by adding another turn-off gate drive circuit to the conventional turn-off gate drive circuit. Simulation and experimental results of the new turn-off gate drive circuit in conjunction with chopper circuit verify a faster turn-off switching performance.

  • PDF

A high efficiency green phosphorescent OLED with simple double emission layer structure

  • Kim, Sun-Young;Park, Tae-Jin;Jeon, Woo-Sik;Kim, Jong-Sil;Pode, Rachamdra;Jang, Jin;Kwon, Jang-Hyuk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.30-33
    • /
    • 2008
  • Using a $Ir(ppy)_3$ doped in hole and electron transport host materials, simple three layers green PHOLEDs comprising double emissive layers have been fabricated. A low driving voltage value of 3.3 V to reach a luminance of $1000\;cd/m^2$ and maximum current- and power-efficiency values of 53.9 cd/A and 57.8 lm/W are demonstrated in this simple structure phosphorescent OLED.

  • PDF

Control Technique of a Utility Interactive Photovoltaic Generation System (계통연계형 태양광발전 시스템의 제어기법)

  • Kim, Dae-Gyun;Jeon, Kee-Young;Hahm, Nyun-Gun;Lee, Sang-Chip;Oh, Bong-Hwan;Chung, Choon-Byeong;Kim, Yong-Joo;Han, Kyung-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.54-56
    • /
    • 2005
  • The paper proposes the solar photovoltaic power generation system method for photovoltaic system to solve the power shortage due the sudden power demand. So that supplied electric power to system at appearance during surplus electric power minute and unit moment link driving with common use system is available, digital PLL circuit system voltage through composition and phase of solar photovoltatic power generation system to do synchronization do. Feed forward controller was applied to get fast current response Solar cell that is changed by solar radiation always kept the maximum output when it used Step up chopper. The dynamic character had checked through simulation used Matlab Sumulink and confirmed through an experiment.

  • PDF

Design of Synchronous Reluctance Motor with Conventional Laminated Rotor (횡방향 성층형 회전자를 가지는 동기형 릴럭턴스 전동기 설계)

  • Lee, Ji-Young;Nam, Hyuk;Lee, Geun-Ho;Hong, Jung-Pyo;Chang, Ki-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.952-954
    • /
    • 2003
  • This paper deals with design of Synchronous Reluctance Motor with conventional laminated rotor for driving an air conditional compressor in a vehicle. To design both stator and rotor, design parameters, such as laminated axial length, rotor diameter, resistance and inductance are considered. The design variables are selected to get the highest power by analyzing the characteristics. The current angle in which torque is maximum is accomplished by finite element method(FEM).

  • PDF

A PV-Module Integrated Phase Shift Full Bridge Converter for EV (태양광 모듈 통합 전기 자동차용 Phase Shift Full Bridge Converter)

  • Hwang, Yun-Kyung;Nam, Kwang-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.425-432
    • /
    • 2020
  • The phase-shifted, full-bridge (PSFB) DC-DC converter is widely used in electric vehicles (EVs) to charge a low-voltage (12 V) battery from a high-voltage battery. A Photovoltaic (PV) module-integrated PSFB converter is proposed for the EV power conversion system. The converter is useful because solar energy can be utilized to extend the driving range. The buck converter circuit is simply realized by adding one switch to the conventional PSFB converter's secondary side. For the inductor and diode, the existing components in the PSFB converter are shared. The proposed converter can charge a low-voltage battery from the PV module with maximum power point tracking. In addition, the two power sources can be used simultaneously, and efficiency is increased by reducing the circulating current, which is a problem for the conventional PSFB converter.

A Utility Interactive Photovoltaic Generation System using PWM Converter (PWM 컨버터를 이용한 계통연계형 태양광발전 시스템)

  • Kim, Dae-Gyun;Jeon, Kee-Young;Hahm, Nyon-Kun;Chung, Choon-Byeong;Lee, Seung-Hwan;Oh, Bong-Hwan;Lee, Hoon-Goo;Han, Kyung-Hee
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.3
    • /
    • pp.111-118
    • /
    • 2005
  • Since the residential load is an AC load and the output of solar cell is DC power, the photovoltaic system needs the DC/AC converter to utilize solar cell. In case of driving to interact with utility line, in order to operate at unity power factor, converter must provide the sinusoidal wave current and voltage with same phase of utility line. Since output of solar cell is greatly fluctuated by insolation, it is necessary that the operation of solar cell output in the range of the vicinity of maximum power point. In this paper, DC/AC converter is three phase PWM converter with smoothing reactor. And then, feed-forward control used to obtain a superior characteristic for current control and digital PLL circuit used to detect the phase of utility line.

A Utility Interactive Photovoltaic Generation System using PWM Converter (PWM 컨버터를 이용한 계통연계형 태양광발전 시스템)

  • Kim D. G.;Chung J. H.;Chung C. B.;Kim S. N.;Lee S. H.;Kang S. W.;Oh B. H.;Lee H. G.;Kim Y. J.;Han K. H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.133-136
    • /
    • 2004
  • Since the residential load is an AC load and the output of solar cell is a DC power, the photovoltaic system needs the DC/AC converter to utilize solar cell. In case of driving to interact with utility line, in order to operate at unity power factor, converter must provide the sinusoidal wave current and voltage with same phase of utility line. Since output of solar cell is greatly fluctuated by insolation, it is necessary that the operation of solar cell output in the range of the vicinity of maximum power point. In this paper, DC/AC converter is three phase PWM converter with smoothing reactor. And then, feedforward control used to obtain a superior characteristic for current control and digital PLL circuit used to detect the phase of utility line.

  • PDF

Arc-Extinguishing Characteristics of A Rotary-Arc Gas Circuit Breaker (자력소호 가스차단부의 소호특성)

  • Shin, Young-June;Park, Kyong-Yop;Song, Ki-Dong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1593-1598
    • /
    • 1994
  • Recently rotary-arc, thermal expansion and their composite interrupters are widely used in the distribution power system because they have lots of advantages in making the larger interrupting capacity, the smaller size, the lighter weight and the less surge. A model interrupter of rotary-arc type, which has constant stroke and thermal expansion volume, was studied by varying the design parameters, i.e. the number of turns of the driving coil, the inner diameter of the moving contact, the gas pressure and the shape of the fixed contact for this project. Short cicuit current interrupting tests were conducted to the model interrupters by varying the requirements from 42% to 175% of the test voltage, interrupting current and transient recovery voltage for the test duty No.4 of 7.2kV 12.5kA single phase test. The pressure rise, minimum and maximum arcing times were analyzed for each model interrupter. All types of model interrupters showed good interrupting performances and sufficient design margins for the ratings.

  • PDF

Sensorless Sine-Wave Controller IC for PM Brushless Motor Employing Automatic Lead-Angle Compensation

  • Kim, Minki;Heo, Sewan;Oh, Jimin;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1165-1175
    • /
    • 2015
  • This paper presents an advanced sensorless permanent magnet (PM) brushless motor controller integrated circuit (IC) employing an automatic lead-angle compensator. The proposed IC is composed of not only a sensorless sine-wave motor controller but also an isolated gate-driver and current self-sensing circuit. The fabricated IC operates in sensorless mode using a position estimator based on a sliding mode observer and an open-loop start-up. For high efficiency PM brushless motor driving, an automatic lead-angle control algorithm is employed, which improves the efficiency of a PM brushless motor system by tracking the minimum copper loss under various load and speed conditions. The fabricated IC is evaluated experimentally using a commercial 200 W PM brushless motor and power switches. The proposed IC is successfully operated without any additional sensors, and the proposed algorithm maintains the minimum current and maximum system efficiency under $0N{\cdot}m$ to $0.8N{\cdot}m$ load conditions. The proposed IC is a feasible sensorless speed controller for various applications with a wide range of load and speed conditions.