• Title/Summary/Keyword: Maximum curvature

Search Result 282, Processing Time 0.024 seconds

A NEW 3-PARAMETER CURVATURE CONDITION PRESERVED BY RICCI FLOW

  • Gao, Xiang
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.829-845
    • /
    • 2013
  • In this paper, we firstly establish a family of curvature invariant conditions lying between the well-known 2-nonnegative curvature operator and nonnegative curvature operator along the Ricci flow. These conditions are defined by a set of inequalities involving the first four eigenvalues of the curvature operator, which are named as 3-parameter ${\lambda}$-nonnegative curvature conditions. Then a related rigidity property of manifolds with 3-parameter ${\lambda}$-nonnegative curvature operators is also derived. Based on these, we also obtain a strong maximum principle for the 3-parameter ${\lambda}$-nonnegativity along Ricci flow.

Impact Characteristics on the Laminated Shell for CF/Epoxy Composite (CF/Epoxy 복합재 적층쉘의 충격특성)

  • 양현수;정풍기;김영남;이종선
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.1
    • /
    • pp.311-323
    • /
    • 2004
  • This paper is to study the energy absorption characteristics of CF/Epoxy(Carbon Fiber/Epoxy Resin) laminated shell with the various curvatures subjected to transverse impact loadings under the low impact velocity in consideration of design of structural members for use of transportation machine, which are consisted of the characteristics of high stiffness, strength and lightweight. The curvature radius are associated with the energy absorption characteristics of CF/Epoxy laminated shell which is brittleness material. In all tests, maximum load of CF/Epoxy laminated plate is higher than that of laminated shell with curvature, but maximum deflection is lower. And then absorbed energy of laminated shell with curvature is higher than laminated plate(curvature radius is unlimited), As curvature radius is increased, the absorbed energy is increased in laminated shell with curvature.

Recognition of partially occluded objects using maximum curvature points

  • Han, Min-Hong;Jang, Dong-Sig
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.786-789
    • /
    • 1988
  • Partially occluded objects are recognized from a 2-D image through the use of maximum curvature points on the image boundary. The vertices of high curvature on an occluded object are classified by the objects which are hypothesized to be involved in the occlusion. A heuristic method is developed for computational speed. Two typical examples are given to illustrate the accuracy as well as the simplicity of the heuristic method.

  • PDF

Retrieval of Regular Texture Images based on Curvature (곡률에 기반한 규칙적인 질감 영상의 추출)

  • 지유상;정동석
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.211-214
    • /
    • 2000
  • In this paper, we propose a regular-texture image retrieval approach relating In curvature. Maximum curvature and minimum curvature are computed from the query and each regular-texture image in the database. Seven features are computed from curvature characterizing statistical properties of the corresponding image. Each regular-texture image in the database is then represented as the seven CM (curvature measurement)-features. Query comparison and matching can be done using the corresponding CM-features. Experimental results on Brodatz texture show that the proposed approach is effective.

  • PDF

A Study on the Surface Deflection in Rectangular Embossing Considering Planar Anisotropy (평면이방성을 고려한 사각엠보싱 공정의 미세면굴곡에 대한 연구)

  • Kim, J.H.;Chung, W.J.
    • Transactions of Materials Processing
    • /
    • v.22 no.6
    • /
    • pp.310-316
    • /
    • 2013
  • Recently, numerical predictions of surface deflection based on curvature analysis have been developed. In the current study, a measure of surface deflection is proposed as the maximum variation of curvature difference between the panel and the tool in order to account for surfaces that have high curvature. The current study focused on the assessment of accuracy for the surface deflection prediction with the consideration of planar anisotropy. As an example, a shallow rectangular drawn part with rectangular embossing was considered. In terms of the proposed surface deflection measure, the maximum variation of curvature difference, the prediction with a planar anisotropic model shows better correspondence with experiment than the one using a normal anisotropic model.

Concave surface curvature effect on heat transfer from a turbulent round impinging jet (오목표면곡률이 난류원형충돌제트의 열전달에 미치는영향)

  • Im, Gyeong-Bin;Lee, Dae-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.691-699
    • /
    • 1997
  • The effects of concave hemispherical surface curvature on the local heat transfer from a turbulent round impinging jet were experimentally investigated. The liquid crystal transient method was used for these measurements. This method, which is a variation on the transient method, suddenly exposes a preheated wall to an impinging jet while video recording the response of liquid crystals for the measurement of the surface temperature. The Reynolds number ranges from Re=11,000 to 50,000, the nozzle-to- surface distance from L/d=2 to 10, and the surface curvature from D/d=6 to 12.The present results are also compared to those for the flat plate case. In the experiment, the local Nusselt numbers tend to increase in all regions with an increasing surface curvature. The maximum Nusselt number for all Reynolds numbers occurred at L/d .ident. 6 and a second maximum in the Nusselt number occurred at R/d .ident. 2 for both Re=23,000 and Re=50,000 in the case of L/d=2 and for Re=50,000 only in the case of L/d=4. Meanwhile, as the surface curvature increases, the value of the secondary maximum Nusselt number decreases. All the other cases exhibit monotonically decreasing values of the Nusselt number along the curved surface. The stagnation point Nusselt numbers are well correlated with Re, L/d, and D/d.

Structural response of historical masonry arch bridges under different arch curvature considering soil-structure interaction

  • Altunisik, Ahmet Can;Kanbur, Burcu;Genc, Ali Fuat;Kalkan, Ebru
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.141-151
    • /
    • 2019
  • In this paper, it is aimed to present a detail investigation about the comparison of static and dynamic behavior of historical masonry arch bridges considering different arch curvature. $G{\ddot{o}}derni$ historical masonry two-span arch bridge which is located in Kulp town, Diyarbakir, Turkey is selected as a numerical application. The bridge takes part in bowless bridge group and built in large measures than the others. The restoration projects were approved and rehabilitation studies have still continued. Finite element model of the bridge is constituted with special software to determine the static and dynamic behavior. To demonstrate the arch curvature effect, the finite element model are reconstructed considering different arch curvature between 2.86 m-3.76 m for first arch and 2.64 m-3.54 m for second arch with the increment of 0.10 m, respectively. Dead and live vehicle loads are taken into account during static analyses. 1999 Kocaeli earthquake ground motion record is considered for time history analyses. The maximum displacements, principal stresses and elastic strains are compared with each other using contour diagrams. It is seen that the arch curvature has more influence on the structural response of historical masonry arch bridges. At the end of the study, it is seen that with the increasing of the arch heights, the maximum displacements, minimum principal stresses and minimum elastic strains have a decreasing trend in all analyses, in addition maximum principal stresses and maximum elastic strains have unchanging trend up to optimum geometry.

Vertex Selection method using curvature information (곡률 정보를 이용한 정점 선택 기법)

  • 윤병주;이시웅;강현수;김성대
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.505-508
    • /
    • 2003
  • The current paper proposes a new vertex selection scheme for polygon-based contour ceding. To efficiently characterize the shape of an object, we incorporate the curvature information in addition to the conventional maximum distance criterion in vertex selection process. The proposed method consists of “two-step procedure.” At first, contour pixels of high curvature value are selected as key vertices based on the curvature scale space (CSS), thereby dividing an overall contour into several contour-segments. Each segment is considered as an open contour whose end points are two consecutive key vertices and is processed independently. In the second step, vertices for each contour segment are selected using progressive vertex selection (PVS) method in order to obtain minimum number of vertices under the given maximum distance criterion ( $D_{MAX}$). Experimental results are presented to compare the approximation performances of the proposed and conventional methods.s.

  • PDF

ON THE C-PROJECTIVE VECTOR FIELDS ON RANDERS SPACES

  • Rafie-Rad, Mehdi;Shirafkan, Azadeh
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.1005-1018
    • /
    • 2020
  • A characterization of the C-projective vector fields on a Randers space is presented in terms of 𝚵-curvature. It is proved that the 𝚵-curvature is invariant for C-projective vector fields. The dimension of the algebra of the C-projective vector fields on an n-dimensional Randers space is at most n(n + 2). The generalized Funk metrics on the n-dimensional Euclidean unit ball 𝔹n(1) are shown to be explicit examples of the Randers metrics with a C-projective algebra of maximum dimension n(n+2). Then, it is also proved that an n-dimensional Randers space has a C-projective algebra of maximum dimension n(n + 2) if and only if it is locally Minkowskian or (up to re-scaling) locally isometric to the generalized Funk metric. A new projective invariant is also introduced.