• Title/Summary/Keyword: Maximum circumferential stress criterion

Search Result 7, Processing Time 0.011 seconds

Fracture Mechanics Analysis of a Reactor Pressure Vessel Considering Pressurized Thermal Shock (가압열충격을 고려한 원자로 압력용기의 파괴역학적 해석)

  • 박재학;박상윤
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.29-38
    • /
    • 2001
  • The purpose of this paper is to evaluate the structural integrity of a reactor pressure vessel subjected to the pressurized thermal shock(PTS) during the transient events, such as main steam line break(MSLB) and small break loss of coolant accident(SBLOCA). For postulated surface or subsurface cracks, variation curves of stress intensity factor are obtained by using the three different methods, including ASME section XI code anlysis, the finite element alternating method and the finite element method. From the stress intensity factor curves, the maximum allowable nil-ductility transition temperatures(RT/NDT/) are determined by the tangent criterion and the maximum criterion for various crack configurations and two initial transient events. As a result of the analysis, it is noted that axial cracks have smaller maximum allowable RT$_{NDT}$ values than same-sized circumferential cracks for both the transient events in the case of the tangent criterion. Axial cracks have smaller RT$_{NDT}$ values than same-sized circumferential cracks for MSLB and circumferential cracks have smaller values than axial cracks for SBLOCA in the case of the maximum criterion.

  • PDF

Study on Crack Propagation of Concrete beam under Mixed-Mode Loading by Minimum Strain Energy Density Failure Criterion (최소 변형 에너지 밀도 기준에 의한 콘크리트 보의 균열전파에 관한 연구)

  • 진치섭;이영호;신동익;오정민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.529-534
    • /
    • 1998
  • To find out an adequate failure criterion in two-dimensional linear elastic crack problems, finite element programs, SED, which determine stress intensity factors $K_I, K_{II}$, crack angle and peak load by the minimum strain energy density failure criterion were developed. In this program, the conventional quadratic isoparametric elements were used in all regions except the crack tip zone where triangular singular elements with 6 nodes were used. The results of SED were compared with the results of those which followed by the maximum circumferential tensile stress criteria and those by the maximum energy release rate criteria and those by Jenq and Shah`s experiments of the same geometry and material properties. The maximum energy release rate criteria were better close to those of the Jenq and Shah`s experiments than the maximum circumferential tensile stress criteria and the minimum strain energy density criteria.

  • PDF

A Study on Fracture Criterion of PMMA Plates Having a V-Notch with an End Hole (단공 (端孔) V-노치가 있는 PMMA 판의 파괴기준에 관한 연구)

  • Choo, Won Chul;Cho, Sang Bong;Yun, Jon Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.865-873
    • /
    • 2016
  • The aim of this study was to examine the validity of fracture criterion for PMMA plates that have a V-notch with an end hole. The predicted stress intensity factors and crack initiation angles by the fracture criterion based on the maximum circumferential stress and the novozhilov's criteria were compared with the experimental results. By increasing the radius of end hole, the differences of predicted stress intensity factors and experimental results increased, possibly due to the plastic zone size. The results indicated that when the radius of end hole is < 1 mm, the fracture criterion would be useful.

MIXED-MODE CRACK PROPAGATION BY MOVABLE CELLULAR AUTOMATA METHOD

  • Pak, Mik-Hail;Lee, Choon-Yeol;Chai, Young-Suck
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1754-1759
    • /
    • 2007
  • Propagation of a mixed-mode crack in Soda-Lime silica glass using Movable Cellular Automata (MCA) method is demonstrated in this study. In MCA method, special fracture criterion is used to describe the process of crack initiation and propagation. Comparison between MCA and other crack initiation criteria results are made. The crack resistance curves and bifurcation angles under different loading angles are found. In comparisons with results of maximum circumferential tensile stress criterion, MCA result showed the sufficient agreement.

  • PDF

Analysis of Mixed-mode Crack Propagation by the Movable Cellular Automata Method

  • Chai, Young-Suck;Lee, Choon-Yeol;Pak, Mikhail
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.66-70
    • /
    • 2008
  • The propagation of a mixed-mode crack in soda-lime silica glass is modeled by movable cellular automata (MCA). In this model, a special fracture criterion is used to describe the process of crack initiation and propagation. The results obtained using the MCA criterion are compared to those obtained from other crack initiation criteria, The crack resistance curves and bifurcation angles are determined for various loading angles. The MCA results are in close agreement with results obtained using the maximum circumferential tensile stress criterion.

Stress and Vibration Analysis of Rotating Laminated Composite Disks (복합적층 회전원판의 응력 및 진동 해석)

  • Koo, Kyo-Nam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.982-989
    • /
    • 2006
  • The centrifugal force acting on a rotating disk creates the in-plane loads in radial and circumferential directions. Application of fiber reinforced composite materials to the rotating disk can satisfy the demand for the increment of its rotating speed. However, the existing researches have been confined to lamina disks. This paper deals with the stress and vibration analysis of rotating laminated composite disks. The maximum strain theory for failure criterion is applied to determine the strength of the laminate disk from which the maximum allowable speed is obtained. Dynamic equation is formulated in order to calculate the natural frequency and critical speed for rotating laminated disks. The Galerkin method is applied to obtain the series solution. The numerical results are given for the cross-ply laminated composite disks.